解:(1)3S
n-4a
n=2n-4,①
得當n≥2時,3S
n-1-4a
n-1=2(n-1)-4 ②
①-②得,3(S
n-S
n-1)-4a
n+4a
n-1=2?-a
n+4a
n-1=2?a
n=4a
n-1-2;
(2)∵當n≥2時,a
n=4a
n-1-2;?a
n-
=4(a
n-1-
);?{a
n-
}是以a
1-
為首項4為公比的等比數(shù)列.
又3S
1-4a
1=2-4?a
1=2?a
1-
=
∴a
n-
=
•4
n-1?a
n=
+
•4
n-1=
.
(3)∵c
n=
=
<
=
+
當n=1時,T
1=
=
<
n≥2時,T
n=c
1+c
2+c
3+…+c
n<
+
+2(
+…+
)
=
+
+2×
=
-
<
綜上,對所有的正整數(shù)n,都有 T
n<
.
分析:(1)利用3S
n-4a
n=2n-4,可得3S
n-1-4a
n-1=2(n-1)-4,兩式作差即可.
(2)由(1)的結(jié)論,把a
n=4a
n-1-2轉(zhuǎn)化為a
n-
=4(a
n-1-
);即{a
n-
}為等比數(shù)列,可求數(shù)列{a
n}的通項公式;
(3)由(2)的結(jié)論求出數(shù)列{c
n}的通項公式,再對數(shù)列{c
n}的通項公式放縮后分離常數(shù),分組求和即可.
點評:本題考查了數(shù)列求和的分組求和法.數(shù)列求和的常用方法有:裂項求和,錯位相減法求和,分組求和,倒序相加求和,公式法等.