15.如圖①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖②.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.

分析 (1)推導(dǎo)出BE⊥OA1,BE⊥OC,從而BE⊥平面A1OC,由CD∥BE,能證明CD⊥平面A1OC.
(2)以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B-A1C-D的余弦值.

解答 證明:(1)在圖1中,

∵AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中點(diǎn),∠BAD=$\frac{π}{2}$,
∴BE⊥AC,
∴在圖2中,BE⊥OA1,BE⊥OC,
∴BE⊥平面A1OC,
又CD∥BE,
∴CD⊥平面A1OC.
解:(2)∵平面A1BE⊥平面BCDE,
∴AO⊥平面BCDE,
以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OA1為z軸,建立空間直角坐標(biāo)系,
B(1,0,0),A1(0,0,1),E(-1,0,0),C(0,1,0),D(-2,1,0),
$\overrightarrow{BC}$=(-1,1,0),$\overrightarrow{{A}_{1}C}$=(0,1,-1),$\overrightarrow{DC}$=(2,0,0),
設(shè)平面A1BC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}\overrightarrow{n}•\overrightarrow{BC}=0\\ \overrightarrow{n}•\overrightarrow{{AC}_{1}}=0\end{array}\right.$,即$\left\{\begin{array}{l}-x+y=0\\ y-z=0\end{array}\right.$,
取x=1,得 $\overrightarrow{n}$=(1,1,1),
同理可求得平面A1CD的法向量$\overrightarrow{m}$=(0,1,1),
設(shè)平面A1BC與平面A1CD夾角為θ,
則cosθ=$\frac{2}{\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{3}$.
∴平面A1BC與平面A1CD夾角的余弦值為$\frac{\sqrt{6}}{3}$.

點(diǎn)評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的菱形,∠BAD=60°,側(cè)棱PA⊥底面ABCD,E、F分別是PA、PC的中點(diǎn).
(Ⅰ)證明:PA∥平面FBD;
(Ⅱ)若二面角E-BD-F的大小為60°,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別 是PC,PD,BC的中點(diǎn).
(Ⅰ)求證:平面PAB∥平面EFG
(Ⅱ)求二面角P-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x2-2ax+5(a>1),g(x)=log3x,若函數(shù)f(x)的定義域與值域都是[1,a],則對于任意的x1,x2∈[1,a+1]時,總有$|{f({x_1})-g({x_2})}|≤{t^2}+2t-1$恒成立,則t的取值范圍為( 。
A.[1,3]B.[-1,3]C.[1,+∞)∪(-∞,-3]D.[3,+∞)∪(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,動圓C過點(diǎn)F(1,0),且與直線x=-1相切于點(diǎn)P.
(Ⅰ)求圓心C的軌跡Γ的方程;
(Ⅱ)過點(diǎn)F任作一直線交軌跡Γ于A,B兩點(diǎn),設(shè)PA,PF,PB的斜率分別為k1,k2,k3,問:$\frac{{{k_1}+{k_3}}}{k_2}$是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓C:x2+y2+2x-3=0,直線l:x+ay+2-a=0(a∈R),則( 。
A.l與C相離B.l與C相切
C.l與C相交D.以上三個選項均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),曲線C1的極坐標(biāo)方程為:ρ=1.
(1)寫出曲線C1的直角坐標(biāo)方程及其參數(shù)方程;
(2)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的$\frac{1}{2}$倍,縱坐標(biāo)壓縮為原來的$\frac{{\sqrt{3}}}{2}$倍,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個動點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,矩形ABCD的邊AB在x軸上,頂點(diǎn)C,D在函數(shù)y=x+$\frac{1}{x}({x>0})$的圖象上.記AB=m,BC=n,則$\frac{m}{n^2}$的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)F2的直線與圓x2+y2=b2相切于點(diǎn)A,并與橢圓C交于不同的兩點(diǎn)P,Q,若$\overrightarrow{PA}$=$\frac{1}{3}\overrightarrow{PQ}$,則橢圓離心率e=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案