7.“a2=1”是“函數(shù)$f(x)=lg({\frac{2}{1-x}+a})$為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用奇函數(shù)的圖象經(jīng)過(guò)原點(diǎn),求得a的值,檢驗(yàn)可得結(jié)論.

解答 解:∵函數(shù)f(x)=lg( $\frac{2}{1-x}$+a)是奇函數(shù),
則f(0)=0,即lg(2+a)=0,則a=-1,
此時(shí),f(x)=lg $\frac{1+x}{1-x}$,是奇函數(shù),滿足條件,
故“a2=1”是“a=-1“的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題主要考查充分必要條件,考查集合的包含關(guān)系以及奇函數(shù)的性質(zhì),利用了定義域包括原點(diǎn)的奇函數(shù)的圖象經(jīng)過(guò)原點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若正數(shù)a,b滿足3+log2a=1+log4b=log8(a+b),則a=$\frac{1}{16}$,b=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系中,已知圓O1:(x+a)2+y2=4,圓O2:(x-a)2+y2=4,其中常數(shù)a>2,點(diǎn)P是圓O1,O2外一點(diǎn).
(1)若a=3,P(-1,4),過(guò)點(diǎn)P作斜率為k的直線l與圓O1相交,求實(shí)數(shù)k的取值范圍;
(2)過(guò)點(diǎn)P作O1,O2的切線,切點(diǎn)分別為M1,M2,記△PO1M1,△PO2M2的面積分別為S1,S2,若S1=$\sqrt{a+1}$•S2,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一動(dòng)點(diǎn)M為圓心,1為半徑作圓M,過(guò)原點(diǎn)O作圓M的兩條切線,A,B為切點(diǎn),若∠AOB=θ,θ∈[$\frac{π}{3}$,$\frac{π}{2}$],則橢圓C的離心率為( 。
A.$\frac{\sqrt{5}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2lnx+x2-2ax(a>0).
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),且f(x1)-f(x2)≥$\frac{3}{2}$-2ln2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.以下莖葉圖記錄了某學(xué)習(xí)小組六名同學(xué)在一次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分),已知該組數(shù)據(jù)的中位數(shù)為85,則x的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.等比數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=2,a4=-2,則{an}的通項(xiàng)公式an=2×(-1)n-1,S9=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角$θ=\frac{π}{6}$,且($\overrightarrow{a}$-m$\overrightarrow$)⊥$\overrightarrow{a}$,則m=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若z=(2+i)cosπ(i為虛數(shù)單位),則z=(  )
A.2+iB.$\frac{2-i}{5}$C.$\frac{2-i}{3}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案