t取何值時,直線L1:(t-2)x+y+t=0與L2:3x+ty+t+6=0
(1)平行;
(2)相交;
(3)垂直.
考點:直線的一般式方程
專題:直線與圓
分析:(1)根據(jù)
t-2
3
=
1
t
t
t+6
求解,(2)利用
t-2
3
1
t
求解,(3)利用3(t-2)+t=0求解.
解答: 解:直線L1:(t-2)x+y+t=0,L2:3x+ty+t+6=0,
(1)
t-2
3
=
1
t
t
t+6

t=3(舍去),或t=-1,
∴當t=-1時,直線L1平行L2,
(2)
t-2
3
1
t
,即t2-2t-3≠0,
∴t≠3且t≠1,
∴當t≠3且t≠1時,直線L1∩L2,
(3)3(t-2)+t=0,t=
3
2

∴當t=
3
2
時,直線L1⊥L2
點評:本題考查了直線的方程,位置關(guān)系,屬于容易題,難度不大,平行時,容易出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2sinx,2sinx),
b
=(cosx,-sinx),求函數(shù)f(x)=
a
b
+1.
(1)如果f(x)=
1
2
,求sin4x的值.
(2)如果x∈(0,
π
2
),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),設(shè)其導函數(shù)為f′(x),當x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數(shù)x的取值范圍是( 。
A、(
1
2
,2)
B、(-2,1)
C、(-1,2)
D、(-1,
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P(sin
π
6
,-cos
π
6
)在∠α的終邊上,且-2π<α<0,則α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行六面體ABCD-A1B1C1D1,底面ABCD為菱形,∠BCD=∠C1CD=60°,求:當
CC1
CD
為何值時,有A1C⊥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線3x2-y2=2的右支上有一點P,它到左右兩焦點的距離比為7:5,則點P的橫坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值
(1)求函數(shù)y=f(x)的解析式;
(2)若對于區(qū)間[-1,1]上任意兩個自變量x1,x2,都有|f(x1)-f(x2)|≤t,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
9
+
y2
8
=1的左、右兩個焦點分別為F1,F(xiàn)2,過F1作一直線交橢圓C于A,B兩點.求△ABF2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn.且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足:b1=3,bn-bn-1=an+1(n≥2),求數(shù)列{
1
bn
}
的前n項和Tn

查看答案和解析>>

同步練習冊答案