數(shù)列{an}的前n項(xiàng)和Sn=n2,則它的通項(xiàng)公式是
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列通項(xiàng)公式和前n項(xiàng)和之間的關(guān)系即可得到結(jié)論.
解答: 解:∵數(shù)列{an}的前n項(xiàng)和Sn=n2,
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1,
當(dāng)n=1,a1=S1=1滿足an=2n-1,
即數(shù)列{an}的通項(xiàng)公式為an=2n-1,
故答案為:an=2n-1
點(diǎn)評(píng):本題主要考查數(shù)列通項(xiàng)公式的求解,根據(jù)數(shù)列通項(xiàng)公式和前n項(xiàng)和之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從6本不同的數(shù)學(xué)書(shū)和5本不同的英語(yǔ)書(shū)中取3本,要求數(shù)學(xué)書(shū)和英語(yǔ)書(shū)都要有取到,則不同的取法種數(shù)有( 。┓N.
A、
C
3
11
-
C
3
5
B、
C
1
5
C
2
6
C、
C
1
5
C
2
6
+
C
2
5
C
1
6
D、
C
3
11
-
C
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x+1)5展開(kāi)式的二項(xiàng)式系數(shù)的和是( 。
A、6B、128C、32D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α、β,它們的終邊分別交單位圓于A、B兩點(diǎn).已知A、B兩點(diǎn)的橫坐標(biāo)分別是
2
10
、
2
5
5
.求tan(α+β)的值=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在北緯45°圈上有A、B兩點(diǎn),若該緯度圈上A、B兩點(diǎn)間的劣弧長(zhǎng)為
2
4
πR(R為地球的半徑),則A、B兩點(diǎn)間的球面距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較22.5,(2.5)0,(
1
2
)2.5
的大小,按從小到大的順序用不等號(hào)連接起來(lái)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出命題“若a≥0且b≥0,則ab≥0”的否命題:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意函數(shù)f(x),x∈D,可按圖示構(gòu)造一個(gè)數(shù)列發(fā)生器,其工作原理如下:
①輸入數(shù)據(jù)x0∈D,經(jīng)數(shù)列發(fā)生器輸出x1=f(x0);
②若x1∉D,則數(shù)列發(fā)生器結(jié)束工作;若x1∈D,則將x1反饋回輸入端,再輸出x2=f(x1),并依此規(guī)律繼續(xù)下去.現(xiàn)定義f(x)=
4x-2
x+1

(1)若輸出x0=
49
65
,則由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.請(qǐng)寫出數(shù)列{xn}的所有項(xiàng);
(2)若要數(shù)列發(fā)生器產(chǎn)生一個(gè)無(wú)窮的常數(shù)數(shù)列,試求輸出的初始數(shù)據(jù)x0的值;
(3)是否存在 x0,在輸入數(shù)據(jù)x0時(shí),該數(shù)列發(fā)生器產(chǎn)生一個(gè)各項(xiàng)均為負(fù)數(shù)的無(wú)窮數(shù)列?若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果f(lgx)=x,則f(3)的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案