(02年全國卷文)(本小題滿分12分,附加題滿分4分)
(I)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,請設(shè)計一種剪拼方法,分別用虛線標示在圖1、圖2中,并作簡要說明;
(II)試比較你剪拼的正三棱錐與正三棱柱的體積的大;
(III)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)
如果給出的是一塊任意三角形的紙片(如圖3),要求剪成一個直三棱柱,使它的全面積與給出的三角形的面積相等。請設(shè)計一種剪拼方法,用虛線標示在圖3中,并作簡要說明。
解析:(I)如圖1,沿正三角形三邊中點連線折起,可拼得一個正三棱錐.
如圖2,正三角形三個角上剪出三個相同的四邊形,其較長的一組鄰邊邊長為三角形邊長的,有一組對角為直角,余下部分按虛線折起,可成一個缺上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱錐的上底.
(II)依上面剪拼方法,有.
推理如下:
設(shè)給出正三角形紙片的邊長為2,那么,正三棱錐與正三棱柱的底面都是邊長為1的正三角形,其面積為.現(xiàn)在計算它們的高:
,.
所以.
(III)如圖3,分別連結(jié)三角形的內(nèi)心與各頂點,得三條線段,再以這三條線段的中點為頂點作三角形.以新作的三角形為直棱柱的底面,過新三角形的三個頂點向原三角形三邊作垂線,沿六條垂線剪下三個四邊形,可心拼成直三棱柱的上底,余下部分按虛線折起,成為一個缺上底的直三棱柱,即可得到直三棱柱.
科目:高中數(shù)學(xué) 來源: 題型:
(02年全國卷文)(12分)如圖,某地一天從6時至14時的溫度變化曲線近似滿足函數(shù)
(1)求這段時間的最大溫差;
(2)寫出這段時間的函數(shù)解析式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(02年全國卷文)(12分)
四棱錐的底面是邊長為的正方形,平面。
(1)若面與面所成的二面角為,求這個四棱錐的體積;
(2)證明無論四棱錐的高怎樣變化。面與面所成的二面角恒大于
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com