【題目】已知函數(shù).
(1)討論的單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明: .
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】試題分析:(1)求函數(shù)的單調(diào)區(qū)間,先求導(dǎo),于導(dǎo)數(shù)可知導(dǎo)數(shù)的符號(hào)受參數(shù)的取值的影響,根據(jù), , ,分析即可,(2)要證,問(wèn)題轉(zhuǎn)化為,然后構(gòu)造函數(shù),只需證明是增函數(shù)即可
試題解析:
解:(1)的定義域?yàn)?/span>,且,
①當(dāng)時(shí), ,此時(shí)的單調(diào)遞減區(qū)間為.
②當(dāng)時(shí),由,得;
由,得.
此時(shí)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
③當(dāng)時(shí),由,得;
由,得.
此時(shí)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
(2)當(dāng)時(shí),要證: ,
只要證: ,即證: .(*)
設(shè),則,
設(shè),
由(1)知在上單調(diào)遞增,
所以當(dāng)時(shí), ,于是,所以在上單調(diào)遞增,
所以當(dāng)時(shí),(*)式成立,
故當(dāng)時(shí), .
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓: 的離心率為, 分別為橢圓的左、右頂點(diǎn), 為右焦點(diǎn),直線(xiàn)與的交點(diǎn)到軸的距離為,過(guò)點(diǎn)作軸的垂線(xiàn), 為上異于點(diǎn)的一點(diǎn),以為直徑作圓.
(1)求的方程;
(2)若直線(xiàn)與的另一個(gè)交點(diǎn)為,證明:直線(xiàn)與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市公租房的房源位于A、B、C三個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,求該市的任4位申請(qǐng)人中:
(1)恰有2人申請(qǐng)A片區(qū)房源的概率;
(2)申請(qǐng)的房源所在片區(qū)的個(gè)數(shù)的ξ分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱中, 底面,四邊形是邊長(zhǎng)為的菱形, 分別是和的中點(diǎn),
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:
①冪函數(shù)f(x)= 的單調(diào)遞減區(qū)間是(﹣∞,0)∪(0,+∞);
②若函數(shù)f(x+2016)=x2﹣2x﹣1(x∈R),則函數(shù)f(x)的最小值為﹣2;
③若函數(shù)f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調(diào)遞增,則f(﹣2)<f(a+1);
④若f(x)= 是(﹣∞,+∞)上的減函數(shù),則a的取值范圍是( , );
⑤既是奇函數(shù),又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R).
其中正確命題的序號(hào)有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿(mǎn)足f(﹣x)=﹣f(x),則稱(chēng)f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2x﹣4a(a∈R),試判斷f(x)是否為定義域R上的“局部奇函數(shù)”?若是,求出滿(mǎn)足f(﹣x)=﹣f(x)的x的值;若不是,請(qǐng)說(shuō)明理由;
(2)若f(x)=2x+m是定義在區(qū)間[﹣1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)的焦點(diǎn)是F1、F2 , 且|F1F2|=2,離心率為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)橢圓右焦點(diǎn)F2的直線(xiàn)l交橢圓于A,B兩點(diǎn),求|AF2||F2B|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,(a∈R)
(1)若函數(shù)f(x)在點(diǎn)區(qū)間[e,+∞]處上為增函數(shù),求a的取值范圍;
(2)若函數(shù)f(x)的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線(xiàn)斜率為3,且k∈Z時(shí),不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時(shí),證明:(mnn)m>(nmm)n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿(mǎn)足 <0,其中a>0,命題q:實(shí)數(shù)x滿(mǎn)足 .
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com