已知函數(shù), 其中

,其中相鄰兩對稱軸間的距離不小于

(1)求的取值范圍;

(2)在中,、分別是角A、B、C的對邊,,當(dāng)最大時,的面積.

 

【答案】

(1). (2).

【解析】

試題分析:(1)

.

,函數(shù)的周期,由題意可知,即,解得,即的取值范圍是. 6分

(2)由(1)可知的最大值為1,

, 8分

由余弦定理知,,又.

聯(lián)立解得,.   12分

考點:本題主要考查平面向量的坐標(biāo)運算,余弦定理的應(yīng)用,和差倍半的三角函數(shù)公式,三角函數(shù)的圖象和性質(zhì),三角形面積公式。

點評:中檔題,本題綜合性較強(qiáng),關(guān)鍵是準(zhǔn)確進(jìn)行向量的坐標(biāo)運算,并運用三角公式對三角函數(shù)式進(jìn)行化簡。(2)小題之中,角的范圍對確定角的大小至關(guān)重要。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年大豐調(diào)研) (16分)

已知函數(shù)(其中) ,

從左到右依次是函數(shù)圖象上三點,且.

(Ⅰ) 證明: 函數(shù)上是減函數(shù);

(Ⅱ)求證:是鈍角三角形;

(Ⅲ) 試問,能否是等腰三角形?若能,求面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年天津卷文)(12分)

已知函數(shù)其中為參數(shù),且

       (I)當(dāng)時,判斷函數(shù)是否有極值;

       (II)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;

       (III)若對(II)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)  其中, 。作出函數(shù)的圖象;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市蕭山五校高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中常數(shù)a,b∈R)。 是奇函數(shù).

(Ⅰ)求的表達(dá)式;

(Ⅱ)求在區(qū)間[1,2]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市高三上學(xué)期九月診斷性考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本題滿分12分)

已知函數(shù)其中a>0,e為自然對數(shù)的底數(shù)。

(I)求

(II)求的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間[0,1]上的最大值。

 

查看答案和解析>>

同步練習(xí)冊答案