已知全集U={(x,y)丨x∈R,y∈R},M={(x,y)丨
y-4
x-2
=3},P={(x,y)丨3x-y-2=0},求(∁UM)∩P.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專(zhuān)題:集合
分析:由已知得M{(x,y)|y=3x-2,x≠2,y≠4},P={(x,y)丨y=3x-2},從而∁UM={(2,4)或y≠3x-2},由此能求出(∁UM)∩P={(2,4)}.
解答: 解:∵M(jìn)={(x,y)丨
y-4
x-2
=3}={(x,y)|y=3x-2,x≠2,y≠4},
∴∁UM={(2,4)或y≠3x-2的平面上的所有點(diǎn)},
∵P={(x,y)丨3x-y-2=0}={(x,y)|y=3x-2},
∴(∁UM)∩P={(2,4)}.
點(diǎn)評(píng):本題考查集合的交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2(m-1)x+m在區(qū)間[-2,+∞)上是減函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足
y≥0
x-y≥0
2x-y-2≤0
,記t=
y-1
x+1
的最大值為m,最小值為n,則m-n=( 。
A、. 
4
3
B、
3
4
C、-
4
3
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x+1)=x2-x-1,則y=f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月產(chǎn)量x(噸)與每噸產(chǎn)品的價(jià)格P(元)之間的關(guān)系式為P=24200-
1
5
x2
,且生產(chǎn)x噸的成本為R=50000+200x元,則當(dāng)利潤(rùn)達(dá)到最大時(shí)該廠每月應(yīng)生產(chǎn)
 
噸產(chǎn)品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿(mǎn)足
2x-y≤0
x-3y+5≥0
,則z=4x•2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列曲線的標(biāo)準(zhǔn)方程
(1)焦點(diǎn)為F1(-1,0)和F2(1,0)且過(guò)(
2
,-
6
2
)的橢圓;
(2)漸近線為y=±
2
3
x且焦距為2
13
的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PB⊥平面ABC,△ABC為直角三角形,PB=BC=AC,∠ACB=90°.
(1)求PA、PC與平面ABC所成的角的大。
(2)求PA與平面PBC所成的角的正弦值;
(3)試比較∠PAC與∠PAB的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求lnx<
1
e
的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案