已知點A、B、C、D均在球O上,AB=BC=
6
,AC=2
3
,若三棱錐D-ABC體積的最大值為3,則球O的表面積為
 
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:確定AB⊥AC,S△ABC=3,利用三棱錐D-ABC的體積的最大值為3,可得D到平面ABC的最大距離為3,再利用射影定理,即可求出球的半徑,即可求出球O的表面積.
解答: 解:∵AB=BC=
6
,AC=2
3

∴AB⊥BC,S△ABC=3,
∵三棱錐D-ABC的體積的最大值為3,
∴D到平面ABC的最大距離為3,
設(shè)球的半徑為R,則
3
2=3×(2R-3),
∴R=2,
∴球O的表面積為4πR2=16π.
故答案為:16π.
點評:本題考查球的半徑,考查體積的計算,確定D到平面ABC的最大距離為3是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+(4+i)x+3+pi=0(p∈R)有實數(shù)根,求p的值,并解這個方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將y=lnx繞原點O旋轉(zhuǎn)角θ,第一次與y軸相切,求sin2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x2≤4},N={-1,0,4},則M∩N=( 。
A、{-1,0,4}
B、{-1,0}
C、{0,4}
D、{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinAsinB=cos2
c
2
,則△ABC為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為某倉庫一側(cè)墻面的示意圖,其下部是矩形ABCD,上部是圓AB,該圓弧所在的圓心為O,為了調(diào)節(jié)倉庫內(nèi)的濕度和溫度,現(xiàn)要在墻面上開一個矩形的通風(fēng)窗EFGH(其中E,F(xiàn)在圓弧AB上,G,H在弦AB上).過O作OP⊥AB,交AB 于M,交EF于N,交圓弧AB于P,已知OP=10,MP=6.5(單位:m),記通風(fēng)窗EFGH的面積為S(單位:m2
(1)按下列要求建立函數(shù)關(guān)系式:
(i)設(shè)∠POF=θ(rad),將S表示成θ的函數(shù);
(ii)設(shè)MN=x(m),將S表示成x的函數(shù);
(2)試問通風(fēng)窗的高度MN為多少時?通風(fēng)窗EFGH的面積S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)y=
sinx-3
sinx+3

(2)y=cos(x+
π
6
),x∈[0,
π
2
]
(3)y=log 
1
3
(sinx+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,an=
an-1
3an-1+1
(n≥2),則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
(2+x)(6-x)
的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案