14.將一個大正方形平均分成9個小正方形,向大正方形區(qū)域隨機(jī)投擲一個點(diǎn)(每次都能投中),投中最左側(cè)三個小正方形區(qū)域的事件記為A,投中最上面三個小正方形區(qū)域或正中間的一個小正方形區(qū)域的事件記為B,則P(A|B)=( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{9}$

分析 由幾何概型的計(jì)算公式與題意可得:P(B)=$\frac{4}{9}$,P(AB)=$\frac{1}{9}$,再根據(jù)有關(guān)的公式可得P(A|B).

解答 解:由幾何概型的計(jì)算公式與題意可得:P(B)=$\frac{4}{9}$,P(AB)=$\frac{1}{9}$,
∴P(A|B)$\frac{P(AB)}{P(B)}$=$\frac{1}{4}$.
故選:A

點(diǎn)評 本題考查了幾何概型、條件概率的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足$z=\frac{a+i}{2-i}+a$為純虛數(shù),則復(fù)數(shù)|z|的模為( 。
A.$\frac{1}{2}$B.2C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由曲線4x2+y2=1變換為曲線:4x2+4y2=1,伸壓變換所對應(yīng)的矩陣為$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線$\frac{\sqrt{3}}{3}$x-y=0的極坐標(biāo)方程(限定ρ≥0)是( 。
A.θ=$\frac{π}{6}$B.θ=$\frac{7}{6}$πC.θ=$\frac{π}{6}$和θ=$\frac{7}{6}$πD.θ=$\frac{5}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t+1\\ y=t+4\end{array}$(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=$\frac{{\sqrt{3}}}{{\sqrt{1+2{{cos}^2}θ}}}$.
(1)寫出直線l一般式方程與曲線C的直角坐標(biāo)的標(biāo)準(zhǔn)方程;
(2)設(shè)曲線C上的點(diǎn)到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>0,且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{a})^{x}-1,x≤0}\\{{x}^{2}+(4a-1)x+3a-1,x>0}\end{array}\right.$在R上單調(diào)遞增,且關(guān)于x的方程|f(x)|=x+1恰有兩個不相等的實(shí)數(shù)根,則a的取值范圍是( 。
A.[$\frac{1}{3}$,1)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=1-2sin2x在點(diǎn)$({\frac{π}{4},f({\frac{π}{4}})})$處的切線為l,則直線l、曲線f(x)以及直線$x=\frac{π}{2}$所圍成的區(qū)域的面積為$\frac{π^2}{16}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從1,2,3,4,5這五個數(shù)中一次隨機(jī)取兩個數(shù),則取出的兩個數(shù)的和為奇數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線C上一點(diǎn)Q(a,2)到焦點(diǎn)的距離為3,線段AB的兩端點(diǎn)A(x1,y1)、B(x2,y2)在拋物線C上.
(1)求拋物線C的方程;
(2)若y軸上存在一點(diǎn)M(0,m)(m>0),使線段AB經(jīng)過點(diǎn)M時,以AB為直徑的圓經(jīng)過原點(diǎn),求m的值;
(3)在拋物線C上存在點(diǎn)D(x3,y3),滿足x3<x1<x2,若△ABD是以角A為直角的等腰直角三角形,求△ABD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案