20.已知數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且對任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為(  )
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

分析 數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),n=1時,a1=2;n≥2時,a1a2a3…an-1=${2}^{(n-1)^{2}}$,可得an=22n-1.即$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{2n-1}}$,利用等比數(shù)列的求和公式與放縮法即可得出.

解答 解:∵數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),
∴n=1時,a1=2;n≥2時,a1a2a3…an-1=${2}^{(n-1)^{2}}$,可得an=22n-1
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{2n-1}}$,數(shù)列$\{\frac{1}{{a}_{n}}\}$為等比數(shù)列,首項為$\frac{1}{2}$,公比為$\frac{1}{4}$.
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=$\frac{2}{3}$$(1-\frac{1}{{4}^{n}})$$<\frac{2}{3}$.
∵對任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為$[\frac{2}{3},+∞)$.
故選:D.

點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的求和公式、放縮法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,有下列四個命題:
①若m?β,α⊥β,則m⊥α;
②若α∥β,m?α,則m∥β;
③若n⊥α,n⊥β,m⊥α,則m⊥β;
④若m∥α,m∥β,則α∥β.
其中正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y≤1\\ x≥0\\ y≤0\end{array}\right.$,則z=x+y的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(-1,2).
(1)求a的值;
(2)解不等式$\frac{4x+m}{{f(x)-4{x^2}}}>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.將參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}({e}^{t}+{e}^{-t})cosθ}\\{y=\frac{1}{2}({e}^{t}-{e}^{-t})sinθ}\end{array}\right.$(θ為參數(shù),t為常數(shù))化為普通方程(結(jié)果可保留e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=log2x與g(x)=($\frac{1}{2}$)x-1在同一直角坐標(biāo)系中的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1  的離心率是 $\frac{2\sqrt{3}}{3}$,其一條準(zhǔn)線方程為x=$\frac{3}{2}$.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)雙曲線C的左右焦點分別為A,B,點D為該雙曲線右支上一點,直線AD與其左支交于點E,若$\overrightarrow{AE}$=λ$\overrightarrow{ED}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某工廠在2016年的“減員增效”中對部分人員實行分流,規(guī)定分流人員一年可以到原單位領(lǐng)取工資的100%,從第二年初,以后每年只能在原單位按上一年的$\frac{2}{3}$領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計劃創(chuàng)辦新的經(jīng)濟實體,該經(jīng)濟實體預(yù)計第一年屬投資階段,第二年每人可獲得b元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年a元,分流后進入新經(jīng)濟實體,第n年的收入為an元;
(1)求{an}的通項公式;
(2)當(dāng)$b≥\frac{3a}{8}$時,是否一定可以保證這個人分流一年后的收入永遠超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從2007名學(xué)生中選取50名參加全國數(shù)學(xué)聯(lián)賽,若采用下面的方法選。合扔煤唵坞S機抽樣從2007人中剔除7人,剩下的2000人再按系統(tǒng)抽樣的方法抽取,則每人入選的可能性( 。
A.都相等,且為$\frac{50}{2007}$B.不全相等
C.均不相等D.都相等,且為$\frac{1}{40}$

查看答案和解析>>

同步練習(xí)冊答案