【題目】在平面直角坐標系xOy中,圓M的方程為x2+y2﹣8x﹣2y+16=0,若直線kx﹣y+3=0上至少存在一點,使得以該點為圓心,半徑為1的圓與圓M有公共點,則k的取值范圍是( )
A.(﹣∞, ]
B.[0,+∞)
C.[﹣ ,0]
D.(﹣∞, ]∪[0,+∞)
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
(Ⅰ)求證:PD⊥平面COD;
(Ⅱ)求二面角B﹣DC﹣O的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的頂點A(1,3),AB邊上的中線CM所在直線方程為2x﹣3y+2=0,AC邊上的高BH所在直線方程為2x+3y﹣9=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2xsinθ﹣1,x∈[﹣ , ].
(1)當 時,求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在x∈[﹣ , ]上是單調增函數(shù),且θ∈[0,2π],求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x .
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)對x∈[0,15]恒成立,求實數(shù)a的取值范圍;
(3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1﹣m≤x≤2m+1},B= .
(1)當m=2時,求A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=f(x)的定義域為D,值域為A,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個等值域變換?說明你的理由; ① ;
②f(x)=x2﹣x+1,x∈R,x=g(t)=2t , t∈R.
(2)設f(x)=log2x的定義域為x∈[2,8],已知 是y=f(x)的一個等值域變換,且函數(shù)y=f[g(t)]的定義域為R,求實數(shù)m、n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a3=12,a11=﹣5,且任意連續(xù)三項的和均為11,則a2017=;設Sn是數(shù)列{an}的前n項和,則使得Sn≤100成立的最大整數(shù)n= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱 中,底面 是邊長為2的正方形, 分別為線段 , 的中點.
(1)求證: ||平面 ;
(2)四棱柱 的外接球的表面積為 ,求異面直線 與 所成的角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com