計(jì)算下列各式.
(1)27
2
3
-2log23×log2
1
8
+2lg(
3+
5
+
3-
5

(2)(0.064)-
1
3
-(-
5
9
)0
+[(-2)3]-
4
3
+16-0.75+(0.01)
1
2
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì)即可得出;
(2)利用指數(shù)函數(shù)的運(yùn)算法則即可得出.
解答: 解(1)原式=(33)
2
3
-3×(-3)+lg(
3+
5
+
3-
5
)2

=32+9+lg(6+2×2)
=9+9+1=19.
(2)原式=(0.43)-
1
3
-1+(-2)-4+24×(-
3
4
)
+(0.12)
1
2

=0.4-1-1+(-2)-4+2-3+0.1
=
10
4
-1+
1
16
+
1
8
+
1
10

=
143
80
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(x-1)ex-kx2(k∈R).
(1)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)k∈(
1
2
,1]時(shí),求用k表示函數(shù)f(x)在(0,+∞)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|2m-1<x<3m+2},B={x|x≤-2或x≥5},若A∩B≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3-
1
2
x2-2x+5,當(dāng)x∈[-1,2]時(shí),f(x)<m恒成立,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線S:y=x3-6x2-x+6,求S上斜率最小的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+mx-lnx,m∈R
(Ⅰ)若函數(shù)f(x)在[1,3]上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅱ)令F(x)=f(x)-x2,是否存在實(shí)數(shù)m,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)F(x)的最小值是2,若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①已知f(sinx)=3-cos2x,求f(cos15°)的值;
②已知cos(
π
4
-α)=
1
3
,求cos(
4
+α)•sin(
4
-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為函數(shù)f(x)的不動(dòng)點(diǎn).已知f(x)=x2+bx+c
(1)若f(x)有兩個(gè)不動(dòng)點(diǎn)為-3,2,求函數(shù)y=f(x)的零點(diǎn)?
(2)若c=
b2
4
時(shí),函數(shù)f(x)沒(méi)有不動(dòng)點(diǎn),求實(shí)數(shù)b的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的一個(gè)函數(shù),則函數(shù)F(x)=f(x)-f(-x)在R上一定是
 
(填:奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)、非奇非偶函數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案