設(shè)函數(shù)f(x)=
4x-4,x≤1
x2-4x+3,x>1
,則函數(shù)g(x)=f(x)-log4x的零點個數(shù)為
 
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)g(x)=f(x)-log4x的零點個數(shù),即函數(shù)y=f(x)的圖象和y=-log4x的圖象的交點個數(shù),數(shù)形結(jié)合可得結(jié)論.
解答: 解:函數(shù)g(x)=f(x)-log4x的零點個數(shù),
即函數(shù)y=f(x)的圖象和y=-log4x的圖象的交點個數(shù),
如圖所示:
函數(shù)g(x)=f(x)-log4x的零點個數(shù)為3,
故答案為:3.
點評:本題主要考查方程的根的存在性及個數(shù)判斷,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,首項a1=2,a4=16,數(shù)列{bn}是等差數(shù)列,且b3=a3,b5=a5,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若求數(shù)列{bn}的通項公式及前n項的和Sn;
(Ⅲ)求數(shù)列{|bn|}前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,下面結(jié)論錯誤的是(  )
A、BD∥平面CB1D1
B、異面直線AD與CB1所成的角為30°
C、AC1⊥平面CB1D1
D、AC1⊥BD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PD垂直于正方形ABCD所在平面,PD=DA
(1)求證:BC⊥平面PDC;
(2)求直線PD與平面PBC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-2≤x+y≤2且-1≤x-y≤1,則z=4x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a<0,-1<b<0,則下列不等式中正確的是(  )
A、ab>ab2>a
B、a<ab<ab2
C、ab>a>ab2
D、a>ab>ab2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在已知拋物線y=x2上存在兩個不同的點M、N關(guān)于直線y=kx+
9
2
對稱,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=
π
3
,x=
π
2
都是函數(shù)y=f(x)=sin(ωx+φ)(ω>0,-π<φ≤π)的對稱軸,且函數(shù)f(x)在區(qū)間[
π
3
,
π
2
]上單調(diào)遞減,則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+b
2x+1+a
是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對于任意x∈[
1
2
,3]
都有f(kx2)+f(2x-1)>0成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案