【題目】已知坐標平面上點與兩個定點, 的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線被所截得的線段的長為8,求直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.
(1)求證:面面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)設(shè),討論函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)沒有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點到點的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)過點且斜率為的直線交曲線于, 兩點,若,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點, 為圓上任意一點,線段上一點滿足,直線上一點,滿足.
(1)當在圓周上運動時,求點的軌跡的方程;
(2)若直線與曲線交于兩點,且以為直徑的圓過原點,求證:直線與不可能相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標原點,焦點在坐標軸上,且經(jīng)過三點.
(1)求橢圓的方程;
(2)在直線上任取一點,連接,分別與橢圓交于兩點,判斷直線是否過定點?若是,求出該定點.若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點, 分別是側(cè)面與底面的中心,則下列命題中錯誤的個數(shù)為( )
①平面; ②異面直線與所成角為;
③與平面垂直; ④.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對于①,∵DF,DF平面, 平面,∴平面,正確;
對于②,∵DF,∴異面直線與所成角即異面直線與所成角,△為等邊三角形,故異面直線與所成角為,正確;
對于③,∵⊥, ⊥CD,且CD=D,∴⊥平面,即⊥平面正確;
對于④,,正確,
故選:A
【題型】單選題
【結(jié)束】
8
【題目】已知函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,橢圓的長軸長是短軸長的2倍,是橢圓的右焦點,直線的斜率為,為坐標原點.
(1)求橢圓的方程;
(2)設(shè)過點的動直線與橢圓相交于兩點.當的面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于( )
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com