A. | $y=-4sin(\frac{π}{8}x-\frac{π}{4})$ | B. | $y=4sin(\frac{π}{8}x-\frac{π}{4})$ | C. | $y=-4sin(\frac{π}{8}x+\frac{π}{4})$ | D. | $y=4sin(\frac{π}{8}x+\frac{π}{4})$ |
分析 觀察函數(shù)的圖象可得,函數(shù)的最小值-4,且在一周期內(nèi)先出現(xiàn)最小值,所以A=-4,由圖可得周期T=16,代入周期公式T=$\frac{2π}{ω}$可求ω;再把函數(shù)圖象上的最值點(diǎn)代入結(jié)合已知φ的范圍可得φ的值.
解答 解:由函數(shù)的圖象可得最大值為4,且在一周期內(nèi)先出現(xiàn)最小值,
所以A=-4
觀察圖象可得函數(shù)的周期T=16,ω=$\frac{2π}{16}$=$\frac{π}{8}$
又函數(shù)的圖象過(2,-4)代入可得sin($\frac{π}{4}$+φ)=1
∴$\frac{π}{4}$+φ=$\frac{π}{2}$+2kπ
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{4}$
∴函數(shù)的表達(dá)式y(tǒng)=-4sin($\frac{π}{8}$x+$\frac{π}{4}$).
故選C.
點(diǎn)評 1本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,其步驟一般是:由函數(shù)的最值求解A,(但要判斷是先出現(xiàn)最大值或是最小值,從而判斷A的正負(fù)號)由周期求解ω,由函數(shù)圖象上的點(diǎn)(一般用最值點(diǎn))代入求解φ.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | -8 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線的一支 | B. | 橢圓 | ||
C. | 雙曲線的一支或橢圓 | D. | 雙曲線或橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{27}$ | B. | $\frac{7}{81}$ | C. | $\frac{40}{243}$ | D. | $\frac{19}{144}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com