在四棱錐中,底面為直角梯形,、,,,的中點.

(1)求證:平面
(2)求證:.

(1)證明過程詳見解析;(2)證明過程詳見解析.

解析試題分析:本題主要以四棱錐為幾何背景考查線線垂直和線面平行的判定,突出考查空間想象能力和推理論證能力.第一問,證明線面平行,先利用一組對邊平行且相等,證明是平行四邊形,再根據(jù)線面平行的判定定理證明;第二問,先證明為平行四邊形,再利用線面垂直的判定定理證明線面垂直,所以垂直面內(nèi)的任意一條線.
試題解析:(1)連結(jié),并連結(jié),
中點,
,且,
∴四邊形為平行四邊形,
中點,又∵中點,
,
平面,平面,
平面.          6分

(2)連結(jié),
中點,∴.
,中點,
為平行四邊形,
,∵,∴,∵,
平面
平面,
.        12分
考點:1.線面平行的判定定理;2.線面垂直的判定定理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(如圖1)在平面四邊形中,中點,,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點.

(1)求三棱錐的體積;
(2)在線段PC上是否存在一點M,使直線與直線所成角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖棱柱的側(cè)面是菱形,,D是的中點,證明:

(Ⅰ)∥面
(Ⅱ)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正方形與梯形所在平面互相垂直,,,點在線段上且不與重合。

(Ⅰ)當點M是EC中點時,求證:BM//平面ADEF;
(Ⅱ)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐A-BCDE中,側(cè)面∆ADE是等邊三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中點,F(xiàn)是AC的中點,且AC=4,

求證:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN

(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知正三棱柱中,,,上的動點.

(1)求五面體的體積;
(2)當在何處時,平面,請說明理由;
(3)當平面時,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求證:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知多面體的底面是邊長為的正方形,底面,,且
(Ⅰ)求多面體的體積;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)記線段BC的中點為K,在平面ABCD內(nèi)過點K作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

查看答案和解析>>

同步練習冊答案