如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

(1)(2)=1

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓E:=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.

(1)求橢圓E的方程;
(2)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xoy中,以點P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點不重合).
(1)求動點P的軌跡方程;
(2)若直線mx一y+2m+5=0(m∈R)與點P的軌跡交于A、B兩點,問:當(dāng)m變化時,以線段AB為直徑的圓是否會經(jīng)過定點?若會,求出此定點;若不會,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)兩準(zhǔn)線間的距離為,焦距為2;
(2)已知P點在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為,過P點作長軸的垂線恰好過橢圓的一個焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點的雙曲線的右焦點為,實軸長.
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個不同的交點,且為銳角(其中為原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C交于兩點A和B,設(shè)P為橢圓上一點,且滿足·(O為坐標(biāo)原點),當(dāng) 時,求實數(shù)t取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的倍,其上一點到右焦點的最短距離為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線交橢圓兩點,當(dāng)時求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點,焦點在軸上且過點,離心率是
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線過點且與橢圓交于,兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l經(jīng)過點(1,0)且一個方向向量d=(1,1).橢圓C:=1(m>1)的左焦點為F1.若直線l與橢圓C交于A,B兩點,滿足·=0,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案