分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.
解答 解:z=$\frac{2i}{1+\sqrt{3}i}$=$\frac{2i(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}$=$\frac{2(i+\sqrt{3})}{4}$=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,
則z的共軛復(fù)數(shù)$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的虛部是-$\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若直線a∥b,b?α則a∥α | B. | 若平面α⊥β,a⊥α,則a∥β | ||
C. | 若a⊥α,b⊥β,a∥b,則α∥β | D. | 若平面α∥β,a?α,b?β,則a∥b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若n組數(shù)據(jù)(x1,y1),…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1 | |
B. | 回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線 | |
C. | 已知點(diǎn)A(-1,0),B(1,0),若|PA|+|PB|=2,則動(dòng)點(diǎn)P的軌跡為橢圓 | |
D. | 設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2.5個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,3),6 | B. | (4,-3),6 | C. | (4,3),36 | D. | (4,-3),36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{3}{4}$π,$\frac{π}{4}$) | B. | (-$\frac{1}{2}$π,$\frac{π}{2}$) | C. | (-$\frac{1}{4}$π,$\frac{3π}{4}$) | D. | (0,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com