將函數(shù)y=sin(ωx-
π
6
)(ω>0)的圖象向右平移
π
4
個單位長度后,所得圖象與原圖象重合,則ω的最小值為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的周期性可得
3ωπ+2π
12
=2kπ+
π
6
,k∈z,即ω=8k,由此求得正數(shù)ω的最小值.
解答: 解:函數(shù)y=sin(ωx-
π
6
)(ω>0)的圖象向右平移
π
4
個單位長度后,
所得圖象對應(yīng)的函數(shù)解析式為y=sin[ω(x-
π
4
)-
π
6
]=sin(ωx-
3ωπ+2π
12
).
再根據(jù)所得圖象與原圖象重合,可得
3ωπ+2π
12
=2kπ+
π
6
,k∈z,
即ω=8k,故正數(shù)ω的最小值為8,
故答案為:8.
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的周期性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱的底面是邊長為4的正三角形,側(cè)棱長為3,一條側(cè)棱與底面相鄰兩邊都成60°角,求此棱柱的側(cè)面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x2-kx-8在[1,2]上具有單調(diào)性,則k的取值范圍是( 。
A、(-∞,8]∪[16,+∞)
B、[8,16]
C、(-∞,8)∪(16,+∞)
D、[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列各式的符號:
(1)sin1190°cos(-258°)tan590°
(2)tan(-668°)cos308°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠BAC的平分線交BC于點M,且BM:MC=2:3.若∠AMB=60°,則
AB+AC
BC
=( 。
A、2
B、
5
C、
7
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四面體邊長
2
a,外接球半徑和內(nèi)切球半徑分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次技能大賽中,有6位參賽者的成績分別是70,76,72,70,72,90,從這6為參賽者中隨機的選x位,其中恰有1位的成績?yōu)?0的概率是
8
15
,則x等于( 。
A、2B、4C、3D、2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,CB=1,CA=2,AA1=
6
,點M是CC1的中點,求證:AM⊥BA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)為(  )
A、x2+(y+2)2=4
B、x2+(y-2)2=4
C、(x-2)2+y2=4
D、(x+2)2+y2=4

查看答案和解析>>

同步練習(xí)冊答案