某校在兩個班進行教學方式對比試驗,兩個月后進行了一次檢測,試驗班與對照班成績統(tǒng)計如2×2列聯(lián)表所示(單位:人).
80及80分以下80分以上合計
試驗班351550
對照班15m50
合計5045n
(1)求m,n;
(2)你有多大把握認為“教學方式與成績有關系”?
(1)m=45-15=30,…(2分)n=50+50=100.…(4分)
(2)K2=
100×(35×30-15×20)2
50×50×55×45
…(7分)≈9.091…(9分)
因為K2>7.879,
所以P=0.005…(12分)
所以有99.5%的把握認為“教學方式與成績”有關系.…(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;(2)朝上的一面數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某單位為了了解用電量y度與氣溫x℃之間的關系,隨機統(tǒng)計了某4天的用電量與當天氣溫,并制作了對照表:
x181310-1
y25343962
由表中數(shù)據(jù)得線性回歸方程y=-2x+a,預測當氣溫為-4℃時,用電量的度數(shù)約為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知某校5個學生的數(shù)學和物理成績如下:
學生的編號12345
數(shù)學成績xi8075706560
物理成績yi7066686462
(Ⅰ)通過大量事實證明發(fā)現(xiàn),一個學生的數(shù)學成績和物理成績是具有很強的線性相關關系的,在上述表格中,用x表示數(shù)學成績,用y表示物理成績,求y關于x的回歸方程;
(Ⅱ)利用殘差分析回歸方程的擬合效果,若殘差和在(-0.1,0.1)范圍內,則稱回歸方程為“優(yōu)擬方程”,問:該回歸方程是否為“優(yōu)擬方程”.
提示:參考數(shù)據(jù):
5
i=1
xiyi=23190
,
5
i=1
x2i
=24750

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知x,y的取值如下表:從散點圖可以看出y與x線性相關,且回歸方程為
y
=0.95x+a
,則a=( 。
x0134
y2.24.34.86.7
A.3.25B.2.6C.2.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

我校隨機抽取100名學生的學習積極性和對待班級工作的態(tài)度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作不太主動參加班級工作合計
學習積極性高40
學習積極性一般30
合計100
已知隨機抽查這100名學生中的一名學生,抽到積極參加班級工作的學生的概率是0.6,
(1)請將上表補充完整(不用寫計算過程)
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關?并說明理由.
(3)從學習積極性高的同學中抽取2人繼續(xù)調查,設積極參加班級工作的人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為了判斷高中三年級學生是否選修文科與性別的關系,現(xiàn)隨機抽取50名學生,得到如下2×2列聯(lián)表:
理科文科
1310
720
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到K2=
50×(13×20-10×7)2
23×27×20×30
≈4.844.則認為選修文科與性別有關系出錯的可能性為( 。
A.2.5%B.5%C.10%D.95%

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在研究吸煙與患慢性支氣管炎是否有關時,通過收集數(shù)據(jù),整理、分析數(shù)據(jù),得出“吸煙與患慢性支氣管炎有關”的結論,并且有99%以上的把握認為這個結論是正確的.則下列說法正確的是( 。
A.100個吸煙者中至少有99個患慢性支氣管炎
B.某個人吸煙,那么這個人有99%的概率患有慢性支氣管炎
C.在100個吸煙者中一定有患慢性支氣管炎的人
D.在100個吸煙者中可能一個患慢性支氣管炎的人都沒有

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若X~B(n,p),且E(X)=6,D(X)=3,則P(X=1)的值為(  )
A.3·2-2B.2-4C.3·2-10D.2-8

查看答案和解析>>

同步練習冊答案