【題目】已知函數(shù).

1)若恒成立,求實數(shù)的取值范圍;

2)若函數(shù)有兩個不同的零點,,且,求證:.

【答案】1;(2)見解析

【解析】

1恒成立,等價于時,;當(dāng)時,,令,注意,對分類討論求出單調(diào)性即可求解;

2)求,得到的單調(diào)區(qū)間,進(jìn)而求出兩零點的范圍是,利用(1)的結(jié)論,,可得,再由減函數(shù),可得,得到,建立不等量關(guān)系,即可證明結(jié)論.

1)由題意可得的定義域為,

恒成立,即恒成立,

當(dāng)時,即;當(dāng)時,即,

構(gòu)造函數(shù)

,

,可知單調(diào)遞減,在單調(diào)遞增,

當(dāng)時,,則單調(diào)遞增,故滿足題意,

當(dāng)時,,

方程有兩個不相等的正根,,

由于,所以,因此單調(diào)遞增,

單調(diào)遞減,單調(diào)遞增,

因此,,不滿足題意,

綜上:.

2)由(1)可得,

,,

所以單調(diào)遞增,在單調(diào)遞減,

所以,

,

所以在各存在一個零點,由題設(shè)可知,

因此,則①,

因為單調(diào)遞減,因此,

,

所以②,

由①②可得:,

化簡可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形,,平面平面,三角形為等邊三角形,,.,分別為線段,的中點.

1)求證:平面平面;

2)求證:平面平面;

3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為F.

1)求點F的坐標(biāo)和橢圓C的離心率;

2)直線過點F,且與橢圓C交于P,Q兩點,如果點P關(guān)于x軸的對稱點為,判斷直線是否經(jīng)過x軸上的定點,如果經(jīng)過,求出該定點坐標(biāo);如果不經(jīng)過,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項均為非負(fù)整數(shù)的數(shù)列{an}同時滿足下列條件:

a1=m(mN*);②ann-1(n≥2);③na1+a2++an的因數(shù)(n ≥1).

(Ⅰ)當(dāng)m=5時,寫出數(shù)列{an}的前五項;

(Ⅱ)若數(shù)列{an}的前三項互不相等,且n≥3時,an為常數(shù),求m的值;

(Ⅲ)求證:對任意正整數(shù)m,存在正整數(shù)M,使得nM時,an為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為、,為橢圓上異于長軸端點的點,且的最大面積為.

1)求橢圓的標(biāo)準(zhǔn)方程

2)若直線是過點點的直線,且與橢圓交于不同的點,是否存在直線使得點、到直線,的距離、,滿足恒成立,若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動圓過定點,且在軸上截得的弦的長為4.

1)若動圓圓心的軌跡為曲線,求曲線的方程;

2)在曲線的對稱軸上是否存在點,使過點的直線與曲線的交點滿足為定值?若存在,求出點的坐標(biāo)及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案