已數(shù)列{an}滿足條件:(*)

(Ⅰ)令,求證:數(shù)列{bn}是等比數(shù)列;

(Ⅱ)求數(shù)列{an}的通項公式;

(Ⅲ)令,求數(shù)列的前n項和Sn

答案:
解析:

  解:(Ⅰ)由

  

  ∴

  ∴數(shù)列是等比數(shù)列;

  (Ⅱ)由(Ⅰ)知數(shù)列是等比數(shù)列,公比為2,

  ∴

  ∵

  ∴由此解得:

  (Ⅲ)由(Ⅰ)得,又,

  ∴

  

  

   (1)

   (2)

  (1)-(2)得

  ∴

  ∴

 。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量
AnAn+1
與向量
BnCn
共線,且點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上,若a1=6,b1=12.求:
(1)數(shù)列{an}的通項an;
(2)數(shù)列{
1
an
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*),其中an,bn分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點,P1是線段AB的中點.
(1)求a1,b1的值;
(2)判斷點P1,P2,P3,…,Pn,…能否在同一條直線上,并證明你的結(jié)論;
(3)設(shè)數(shù)列an的公差為2,在數(shù)列cn中,c1=1,c2=-13,cn+2-2cn+1+cn=an(n∈N*),求出cn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共12分) 在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點An(n,an) (n∈N*)都在斜率為2的同一條直線l上. 若a1=-3,b1=10。1)求數(shù)列{an}與{ bn }的通項公式;

(2)求當(dāng)n取何值時△AnBnCn的面積Sn最小,并求出Sn的這個最小值。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省孝感市安陸一中高三綜合測試數(shù)學(xué)試卷11(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上,若a1=6,b1=12.求:
(1)數(shù)列{an}的通項an;
(2)數(shù)列{}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案