某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(萬元) 4 2 3 5
銷售額y(萬元) 49 26 39 54
根據(jù)上表可得回歸方程
y
=
b
x+
a
一定過點(diǎn)
 
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由樣本數(shù)據(jù)可得,
.
x
=
4+2+3+5
4
=3.5,
.
y
=
49+26+39+54
4
=42,利用回歸直線方程恒過樣本中心點(diǎn),可得結(jié)論.
解答: 解:依題意知,
.
x
=
4+2+3+5
4
=3.5,
.
y
=
49+26+39+54
4
=42,
∵利用回歸直線方程恒過樣本中心點(diǎn),
∴回歸方程
y
=
b
x+
a
一定過點(diǎn)(3.5,42).
故答案為:(3.5,42).
點(diǎn)評(píng):本題考查數(shù)據(jù)的回歸直線方程,利用回歸直線方程恒過樣本中心點(diǎn)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對(duì)?x∈R都有f(x-1)=f(x+1)成立,當(dāng)x∈(0,1]且x1≠x2時(shí),有
f(x2)-f(x1)
x2-x1
<0.給出下列命題:
(1)f(1)=0
(2)f(x)在[-2,2]上有5個(gè)零點(diǎn)
(3)(2013,0)是函數(shù)y=f(x)的一個(gè)對(duì)稱中心
(4)直線是函數(shù)y=f(x)圖象的一條對(duì)稱軸
則正確命題個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過P作PM⊥x軸于M,N為PM上一點(diǎn),且
PM
=
2
NM

(Ⅰ)求點(diǎn)N的軌跡C的方程;
(Ⅱ)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點(diǎn),則kAD+kAE是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a、b、c,且cosC=
b
a
+
3c
5a

(I)求sinA;
(Ⅱ)若a=8
2
,b=10,求
BA
BC
上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,+∞)上的函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
,給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,4];
②關(guān)于x的方程f(x)=
1
2
有6個(gè)不相等的實(shí)根;
③當(dāng)x∈[1,2]時(shí),函數(shù)f(x)的圖象與x軸圍成的圖形的面積為S,則S=2;
④存在x0∈[1,8],使得不等式x0f(x0)>6成立.
其中你認(rèn)為正確的所有結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐的各棱長均為4cm,則它的全面積等于
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的偶函數(shù).x≥0時(shí),f(x)=x-1.則f(x-1)>1的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x, x>0
2x, x≤0
,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足
x≥0
y≥0
2x-y≤0
x-3y+5≥0
,則2x+y的最大值為(  )
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案