6.已知函數(shù)f(x)時(shí)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x5-1;當(dāng)-1≤x≤1時(shí),f(-x)=-f(x);當(dāng)x>0時(shí),f(x+1)=f(x),則f(2016)═( 。
A.-2B.-1C.0D.2

分析 當(dāng)x>0時(shí),f(x+1)=f(x),求得函數(shù)的周期為1,再利用當(dāng)-1≤x≤1時(shí),f(-x)=-f(x),得到f(1)=-f(-1),當(dāng)x<0時(shí),f(x)=x5-1,得到f(-1)=-2,化簡(jiǎn)求解即可得出結(jié)論.

解答 解:∵當(dāng)x>0時(shí),f(x+1)=f(x),∴當(dāng)x>0時(shí),f(x)的周期為1.
∴f(2016)=f(1),
∵當(dāng)-1≤x≤1時(shí),f(-x)=-f(x),
∴f(1)=-f(-1),
∵當(dāng)x<0時(shí),f(x)=x5-1,
∴f(-1)=-2,
∴f(1)=-f(-1)=2,
∴f(6)=2.
故選:D.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的計(jì)算,考查函數(shù)的周期性,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某校先后舉辦了多個(gè)學(xué)科的社團(tuán)活動(dòng),高一(2)班有55名學(xué)生,其中32名學(xué)生是語文社團(tuán)的成員,36學(xué)生是數(shù)學(xué)社團(tuán)的成員,18名學(xué)生既是語文社團(tuán)的成員,又是數(shù)學(xué)社團(tuán)的成員,這個(gè)班既不是語文社團(tuán)成員,也不是數(shù)學(xué)社團(tuán)的學(xué)生人數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若圓錐的側(cè)面展開圖是半徑為2的半圓,則圓錐的高是$\sqrt{3}$,圓錐的軸截面面積是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|y=$\sqrt{x-4}$},B={x|-1≤2x-1≤0},則(∁RA)∩B=( 。
A.(4,+∞)B.$[0,\frac{1}{2}]$C.$(\frac{1}{2},4]$D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=3,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=$\frac{1}{3}$x3+ax2+bx+c有極值點(diǎn)x1,x2(x1>x2),f(x1)=x1,則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實(shí)數(shù)根的個(gè)數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=3x+x3-2在區(qū)間(0,1)內(nèi)的零點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知三角形的頂點(diǎn)為A(2,3),B(-1,0),C(5,-1),求:
(1)AC邊上的中線BD所在直線的方程;
(2)AB邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.
(1)求F(x)的解析式;
(2)比較ab與ba的大;
(3)已知(m+4)-b<(3-2m)-b,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案