7.設(shè)全集U={1,2,3,4,5},集合A={1,3},B={3,5},則∁U(A∪B)=( 。
A.{1,4}B.{1,5}C.{2,4}D.{2,5}

分析 先求出A∪B={1,3,5},由此能求出∁U(A∪B).

解答 解:∵全集U={1,2,3,4,5},集合A={1,3},B={3,5},
∴A∪B={1,3,5},
U(A∪B)={2,4}.
故選:C.

點評 本題考查補集、交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意補集、交集的定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知2x≤16且${log_2}x≥\frac{1}{2}$,求函數(shù)$f(x)={log_2}\frac{x}{2}•{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\frac{x}{e^x}$的單調(diào)遞減區(qū)間是(  )
A.(-∞,1)B.(0,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+aln(x+1)
(1)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍
(2)若函數(shù)y=f(x)有兩個極值點x1,x2,求證:$0<\frac{{f({x_2})}}{x_1}<-\frac{1}{2}+ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的通項公式為an=n-7$\sqrt{n}$+2,則此數(shù)列中數(shù)值最小的項是( 。
A.第10項B.第11項C.第12項D.第13項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線x+(b-2)y+1=0與直線a2x+(b+2)y+3=0互相垂直,a,b∈R,則ab的最大值為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)g(x)=-x2+2bx-4,(1≤b≤2),若對任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知在△ABC中,角A,B,C的對邊分別為a,b,c.若cos2A+cos2C=2cos2B,則cosB的最小值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.曲線y=$\frac{x}{1+{x}^{2}}$在原點處切線的傾斜角為45°.

查看答案和解析>>

同步練習(xí)冊答案