在區(qū)間[0,4]內(nèi)隨機(jī)取兩個(gè)數(shù)a、b,則使得函數(shù)f(x)=x2+ax+b2有零點(diǎn)的概率為______.
∵兩個(gè)數(shù)a、b在區(qū)間[0,4]內(nèi)隨地機(jī)取,
∴以a為橫坐標(biāo)、b為縱坐標(biāo)建立如圖所示直角坐標(biāo)系,
可得對(duì)應(yīng)的點(diǎn)(a,b)在如圖的正方形OABC及其內(nèi)部任意取,
其中A(0,4),B(4,4),C(4,0),O為坐標(biāo)原點(diǎn)
若函數(shù)f(x)=x2+ax+b2有零點(diǎn),則
△=a2-4b2≥0,解之得a≥2b,滿足條件的點(diǎn)(a,b)在直線a-2b=0的下方,
且在正方形OABC內(nèi)部的三角形,其面積為S1=
1
2
×4×2
=4
∵正方形OABC的面積為S=4×4=16
∴函數(shù)f(x)=x2+ax+b2有零點(diǎn)的概率為P=
S1
S
=
4
16
=
1
4

故答案為:
1
4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若一直角三角形的兩直角邊的長(zhǎng)都是0到1之間的任意實(shí)數(shù),那么事件“斜邊長(zhǎng)小于
3
4
”的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間[-1,1]上隨機(jī)任取兩個(gè)數(shù)x,y,則滿足x2+y2
1
4
的概率等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某路公共汽車10分鐘一輛,甲、乙兩個(gè)人獨(dú)自等車,求“兩人等車時(shí)間的差不超過3分鐘”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間[0,1]上隨機(jī)地任取兩個(gè)數(shù)a,b,則滿足a2+b2
1
4
的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若點(diǎn)(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).
(1)點(diǎn)M(x,y)橫、縱坐標(biāo)分別由擲骰子確定,第一次確定橫坐標(biāo),第二次確定縱坐標(biāo),則點(diǎn)M(x,y)落在上述區(qū)域的概率?
(2)試求方程x2+2px-q2+1=0有兩個(gè)實(shí)數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC中,AB=4,BC=6,∠ABC=30°,一只螞蟻在該三角形區(qū)域內(nèi)隨機(jī)爬行,則其恰好在離三個(gè)頂點(diǎn)距離都大于1的地方的概率為( 。
A.
π
12
B.1-
π
12
C.1-
π
6
D.
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知集合A={y|y=x2+2x,-2≤x≤2},B={x|x2+2x-3≤0},在集合A中任意取一個(gè)元素a,則a∈B的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了防止受污染的產(chǎn)品影響我國民眾的身體健康,要求產(chǎn)品在進(jìn)入市場(chǎng)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷售,否則不能銷售.已知某產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒有影響.
(Ⅰ)求該產(chǎn)品不能銷售的概率;
(Ⅱ)如果產(chǎn)品可以銷售,則每件產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每件產(chǎn)品虧損80元(即獲利-80元).已知一箱中有產(chǎn)品4件,記一箱產(chǎn)品獲利X元,求X的分布列,并求出均值E(X).

查看答案和解析>>

同步練習(xí)冊(cè)答案