科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年江蘇省無錫市濱湖區(qū)梅村高級(jí)中學(xué)高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x,則稱點(diǎn)(x,f(x))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x,f(x))對(duì)稱.
已知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2009年山東省東營(yíng)市高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:解答題
對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x,則稱點(diǎn)(x,f(x))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x,f(x))對(duì)稱.
已知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011年遼寧省丹東二中高三數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x,則稱點(diǎn)(x,f(x))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x,f(x))對(duì)稱.
已知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>