【題目】某餅屋進(jìn)行為期天的五周年店慶活動,現(xiàn)策劃兩項(xiàng)有獎(jiǎng)促銷活動,活動一:店慶期間每位顧客一次性消費(fèi)滿元,可得元代金券一張;活動二:活動期間每位顧客每天有一次機(jī)會獲得一個(gè)一元或兩元紅包.根據(jù)前一年該店的銷售情況,統(tǒng)計(jì)了位顧客一次性消費(fèi)的金額數(shù)(元),頻數(shù)分布表如下圖所示:
一次性消費(fèi)金額數(shù) | |||||
人數(shù) |
以這位顧客一次消費(fèi)金額數(shù)的頻率分布代替每位顧客一次消費(fèi)金額數(shù)的概率分布.
(1)預(yù)計(jì)該店每天的客流量為人次,求這次店慶期間,商家每天送出代金券金額數(shù)的期望;
(2)假設(shè)顧客獲得一元或兩元紅包的可能性相等,商家在店慶活動結(jié)束后會公布幸運(yùn)數(shù)字,連續(xù)天參加返紅包的顧客,如果紅包金額總數(shù)與幸運(yùn)數(shù)字一致,則可再獲得元的“店慶幸運(yùn)紅包”一個(gè).若公布的幸運(yùn)數(shù)字是“”,求店慶期間一位連續(xù)天消費(fèi)的顧客獲得紅包金額總數(shù)的期望.
【答案】(1)元(2)元
【解析】
(1)先計(jì)算出顧客一次消費(fèi)滿元的概率,再可得;
(2)記店慶期間一位連續(xù)天消費(fèi)的顧客獲得紅包金額總數(shù)為,則的可取值為,,,,,,計(jì)算出取每一個(gè)值的概率后,利用期望公式計(jì)算可得.
(1)依題意,顧客一次消費(fèi)滿元的概率為
記商家每天送出代金券金額數(shù)為,則,
∴商家每天送出代金券金額數(shù)的期望為元;
(2)記店慶期間一位連續(xù)天消費(fèi)的顧客獲得紅包金額總數(shù)為,則的可取值為,,,,,,且,,,
,,.
∴
店慶期間一位連續(xù)5天消費(fèi)的顧客獲得紅包金額總數(shù)的期望為元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);
(2)若函數(shù)的最小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,平面,,分別為,的中點(diǎn).
(1)證明:平面;
(2)若與平面所成的角為,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)求證:當(dāng)時(shí),不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在上的奇函數(shù),當(dāng)時(shí),有,且當(dāng)時(shí),,下列命題正確的是( )
A.B.函數(shù)在定義域上是周期為的函數(shù)
C.直線與函數(shù)的圖象有個(gè)交點(diǎn)D.函數(shù)的值域?yàn)?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若是的中點(diǎn),過點(diǎn)作球的截面,則截面面積的最小值是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,且,平面平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)點(diǎn)是線段上的中點(diǎn)時(shí),求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)擁有3條相同的生產(chǎn)線,每條生產(chǎn)線每月至多出現(xiàn)一次故障.各條生產(chǎn)線是否出現(xiàn)故障相互獨(dú)立,且出現(xiàn)故障的概率為.
(1)求該企業(yè)每月有且只有1條生產(chǎn)線出現(xiàn)故障的概率;
(2)為提高生產(chǎn)效益,該企業(yè)決定招聘名維修工人及時(shí)對出現(xiàn)故障的生產(chǎn)線進(jìn)行維修.已知每名維修工人每月只有及時(shí)維修1條生產(chǎn)線的能力,且每月固定工資為1萬元.此外,統(tǒng)計(jì)表明,每月在不出故障的情況下,每條生產(chǎn)線創(chuàng)造12萬元的利潤;如果出現(xiàn)故障能及時(shí)維修,每條生產(chǎn)線創(chuàng)造8萬元的利潤;如果出現(xiàn)故障不能及時(shí)維修,該生產(chǎn)線將不創(chuàng)造利潤,以該企業(yè)每月實(shí)際獲利的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?(實(shí)際獲利=生產(chǎn)線創(chuàng)造利潤-維修工人工資)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省在2017年啟動了“3+3”高考模式.所謂“3+3”高考模式,就是語文、數(shù)學(xué)、外語(簡稱語、數(shù)、外)為高考必考科目,從物理、化學(xué)、生物、政治、歷史、地理(簡稱理、化、生、政、史、地)六門學(xué)科中任選三門作為選考科目.該省某中學(xué)2017級高一新生共有990人,學(xué)籍號的末四位數(shù)從0001到0990.
(1)現(xiàn)從高一學(xué)生中抽樣調(diào)查110名學(xué)生的選考情況,問:采用什么樣的抽樣方法較為恰當(dāng)?(只寫出結(jié)論,不需要說明理由)
(2)據(jù)某教育機(jī)構(gòu)統(tǒng)計(jì),學(xué)生所選三門學(xué)科在將來報(bào)考專業(yè)時(shí)受限制的百分比是不同的.該機(jī)構(gòu)統(tǒng)計(jì)了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.
設(shè)以上條形圖中受限百分比的均值為,標(biāo)準(zhǔn)差為.如果一個(gè)學(xué)生所選三門學(xué)科專業(yè)受限百分比在區(qū)間內(nèi),我們稱該選擇為“恰當(dāng)選擇”.該校李明同學(xué)選擇了化學(xué),然后從余下五門選考科目中任選兩門.問李明的選擇為“恰當(dāng)選擇"的概率是多少?(均值,標(biāo)準(zhǔn)差均精確到0.1)
(參考公式和數(shù)據(jù):,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com