已知 p:“一個有理數(shù)與一個無理數(shù)的和是無理數(shù)”,q:“一個有理數(shù)與一個無理數(shù)的積是無理數(shù)”,則命題 p、q、p∧q中的真命題是( 。
A、pB、q
C、p∧qD、p、q、p∧q
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:容易判斷出p是真命題,而對于q,當有理數(shù)為0時,0和一個無理數(shù)的積是0,是有理數(shù),所以q便是假命題,所以便得到p∧q為假命題,所以得出p,q,p∧q中的真命題便是p.
解答: 解:一個有理數(shù)與一個無數(shù)的和是無理數(shù),即p為真命題;
一個有理數(shù)與一個無理數(shù)的積不一定是無理數(shù),比如0與一個無理數(shù)的積是0,是有理數(shù),即q為假命題;
∴p∧q為假命題;
∴p,q,p∧q中的真命題是p.
故選A.
點評:考查對有理數(shù)與無理數(shù)概念的掌握,而對于有理數(shù)與無理數(shù)的積時,只有0和無理數(shù)的積是有理數(shù),以及p∧q真假和p,q真假的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的焦點為(-4,0),(4,0),橢圓上一點 P到兩個焦點的距離之和為10,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l與曲線C滿足下列兩個條件:(i)直線l在點P(x0,y0)處與曲線C相切;(ii)曲線C在點P附近位于直線l的兩側(cè),則稱直線l在點P處“切過”曲線C.下列命題正確的是
 
(寫出所有正確命題的編號)
①直線l:y=0在點P(0,0)處“切過”曲線C:y=x3
②直線l:y=x-1在點P(1,0)處“切過”曲線C:y=lnx.
③直線l:y=-x+π在點P(π,0)處“切過”曲線C:y=sinx.
④直線l:y=x+1在點P(0,1)處“切過”曲線C:y=ex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

據(jù)報道,某市大學城今年4月份曾發(fā)生流感,據(jù)資料統(tǒng)計,4月1日,該大學城新的流感病毒感染者有4人,此后,每天新感染病毒的患者的人數(shù)平均比前一天新感染病毒的患者的人數(shù)多4人.由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天新感染病毒的患者的人數(shù)平均比前一天的新感染病毒的患者的人數(shù)減少2人,到4月30日止,該大學城在這30天內(nèi)感染該病毒的患者總共有600人.問4月幾日,該大學城感染此病毒的新患者(當天感染者)人數(shù)最多?并求出這一天的新患者的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角三角形ABC中,∠C=
π
2
,AC=3,取點D使
BD
=2
DA
,那么
CD
CA
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,-2),
b
=(x,1),且
a
b
,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
0
(x2+x)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=|ex+
a
ex
|(a∈R)在區(qū)間[0,1]上單調(diào)遞增,則a的取值范圍是( 。
A、a∈[-1,1]
B、a∈[-1,0]
C、a∈[0,1]
D、a∈[-
1
e
,e]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=x|x-a|,下列說法中,描述完全正確的個數(shù)為( 。
①無論a取何實數(shù),函數(shù)f(x)的圖象均過原點;
②當a>2時,函數(shù)f(x)在區(qū)間(-∞,2]上的解析式為f(x)=-x2+ax;
③當a=1時,函數(shù)f(x)有最大值
1
4
;
④當a=2時,若函數(shù)y=f(x)-m有3個不同的零點,則0<m<1.
A、0B、1C、2D、3

查看答案和解析>>

同步練習冊答案