【題目】如圖,在長方體中,的中點,的中點,為線段上一點,且滿足的中點.

1)求證:平面;

2)求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)解法一: 的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過證明直線的方向向量和平面的法向量垂直,證得平面.

2)利用平面和平面法向量,計算出二面角的余弦值.

1)法一:作的中點,連接,.的中點,∴的中位線,∴,又的中點,∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.

另解:(法二)∵在長方體中,,兩兩互相垂直,建立空間直角坐標(biāo)系如圖所示,

,,

,,

,,,

,,.

1)設(shè)平面的一個法向量為,

,

,則,.,又

,,又平面,平面.

2)設(shè)平面的一個法向量為,

,

,則,..

同理可算得平面的一個法向量為

,

又由圖可知二面角的平面角為一個鈍角,

故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)已知點,交于點,與交于兩點,且,求的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)已知為自然對數(shù)的底數(shù),求函數(shù)處的切線方程;

(2)當(dāng)時,方程有唯一實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點,拋物線Cy2=8x上一點A到焦點F的距離為6,若點P為拋物線C準(zhǔn)線上的動點,則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若的極大值點,求的取值范圍;

(2)當(dāng),時,方程(其中)有唯一實數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,,,底面,,點在棱上,且

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱的軸截面是邊長為2的正方形,點P是圓弧上的一動點(不與重合),點Q是圓弧的中點,且點在平面的兩側(cè).

1)證明:平面平面;

2)設(shè)點P在平面上的射影為點O,點分別是的重心,當(dāng)三棱錐體積最大時,回答下列問題.

i)證明:平面

ii)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述正確的是(

A.命題pq為真,則恰有一個為真命題

B.命題已知,則的充分不必要條件

C.命題都有,則,使得

D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點,求a的取值范圍;

設(shè)函數(shù),,當(dāng)時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案