10.如果輸入n=2,那么執(zhí)行圖中算法后的輸出結(jié)果是( 。
A.2B.3C.4D.5

分析 執(zhí)行算法后依次寫出n的值,即可寫出結(jié)果.

解答 解:執(zhí)行算法,由題意得
第一步:n=2
第二步:n=3
第三步:n=4
第四步:n=4
第五步:輸出n的值為4,
故選:C.

點(diǎn)評(píng) 本題主要考察算法的概念,順序?qū)懗鰣?zhí)行結(jié)果即可,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,四邊形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,點(diǎn)G是BF的中點(diǎn).
(1)求證:CG∥平面ADF;
(2)求三棱錐E-AFB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).求證:平面PAC⊥平面PBC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若$\frac{a_3}{b_7}=\frac{2}{3}$,則$\frac{S_5}{{{T_{13}}}}$=$\frac{10}{39}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,在矩形ABCD中,點(diǎn)E為邊AD上靠近D的三等分點(diǎn),點(diǎn)F為邊CD的中點(diǎn),AB=AE=4,現(xiàn)將△ABE沿BE邊折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ)求證:平面PBE⊥平面PEF;
(Ⅱ)求四棱錐P-BCFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列函數(shù)的值域:
(1)y=x2-2x-3,(0≤x<3)
(2)f(x)=$\frac{3x+12}{x-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若命題“?x∈R,使得$\frac{\sqrt{2}}{3}$sinx+$\frac{\sqrt{2}}{3}$cosx-m=0”是真命題,則m的值可以是(  )
A.-1B.1C.-$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平面向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=($\sqrt{2}$,$\sqrt{2}$),f(x)=$\overrightarrow{a}$?$\overrightarrow$,x∈R.
(1)求函數(shù)f(x)的最大值及取得最大值時(shí)相應(yīng)的x的取值集合;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C的圓心在直線2x-y-7=0上,且與y軸交于A(0,-4),B(0,-2)兩點(diǎn)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(-1,-4)作圓C的切線,切點(diǎn)分別為點(diǎn)A,B,求切線的方程及切線長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案