已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+x+b
(a≥0),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是y=3x-3,求a,b的值;
(Ⅱ)若函數(shù)g(x)=e-ax•f′(x),求函數(shù)g(x)的單調(diào)區(qū)間.
分析:(I)根據(jù)曲線y=f(x)在A點(diǎn)處的切線方程是y=3x-3,建立關(guān)于a和b的方程組,解之即可;
(II)先求出函數(shù)g(x)的解析式,然后討論a的正負(fù),利用導(dǎo)數(shù)的符號研究函數(shù)的單調(diào)性,根據(jù)fˊ(x)>0和fˊ(x)<0求出函數(shù)g(x)的單調(diào)區(qū)間即可.
解答:解:(Ⅰ)∵f(x)=
1
3
x3+
1
2
ax2+x+b
(a≥0),
∴f'(x)=x2+ax+1.(1分)
∵f(x)在(1,0)處切線方程為y=3x-3,
f′(1)=3
f(1)=0
,(3分)
∴a=1,b=-
11
6
.(各1分)(5分)
(Ⅱ)g(x)=e-ax•f′(x)=
x2+ax+1
eax
,x∈R.
g'(x)=-x[ax+(a2-2)e-ax].(7分)
①當(dāng)a=0時(shí),g'(x)=2x,
x (-∞,0)          0        (0,+∞)
g'(x) - 0 +
g(x) 減函數(shù) 極小值 增函數(shù)
g(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間(-∞,0).(9分)
②當(dāng)a>0時(shí),令g'(x)=0,得x=0或x=
2
a
-a
(10分)
(。┊(dāng)
2
a
-a
>0,即0<a<
2
時(shí),
x (-∞,0) 0 (0,
2
a
-a
2
a
-a
2
a
-a
,+∞)
g'(x) - 0 + 0 -
g(x) 減函數(shù) 極小值 增函數(shù) 極大值 減函數(shù)
g(x)的單調(diào)遞增區(qū)間為(0,
2
a
-a
),單調(diào)遞減區(qū)間(-∞,0),(-
2
a
-a
,+∞);(11分)
(ⅱ)當(dāng)
2
a
-a
=0,即a=
2
時(shí),g'(x)=-2x2e-2x≤0,
故g(x)在(-∞,+∞)單調(diào)遞減;(12分)
(ⅲ)當(dāng)
2
a
-a
<0,即a>
2
時(shí),
x (-∞,
2
a
-a
2
a
-a
2
a
-a
,0)
0 (0,+∞)
g'(x) - 0 + 0 -
g(x) 減函數(shù) 極小值 增函數(shù) 極大值 減函數(shù)
g(x)在(
2
a
-a
,0)上單調(diào)遞增,在(0,+∞),(-∞,
2
a
-a
)上單調(diào)遞(13分)
綜上所述,當(dāng)a=0時(shí),g(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間(-∞,0);
當(dāng)0<a<
2
時(shí),g(x)的單調(diào)遞增區(qū)間為(0,
2
a
-a
),單調(diào)遞減區(qū)間為(-∞,0),
當(dāng)a=
2
時(shí),g(x)的單調(diào)遞減區(qū)間為(-∞,+∞);
當(dāng)a>
2
時(shí),g(x)的單調(diào)遞增區(qū)間為(
2
a
-a
,0),單調(diào)遞減區(qū)間為(0,+∞),(-∞,
2
a
-a
).(“綜上所述”要求一定要寫出來)
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,同時(shí)考查分類討論的思想,計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是(  )

查看答案和解析>>

同步練習(xí)冊答案