在四棱錐中,,,,的中點(diǎn),

(1)求證:
(2)求證:;
(3)求三棱錐的體積

((1)因?yàn)榈妊切?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/f/1yqox3.png" style="vertical-align:middle;" />中 ,同時(shí),可知結(jié)論,
(2)利用中位線性質(zhì)在中, .得到結(jié)論。
(3)

解析試題分析:解:(1)證明 取中點(diǎn),連接.   1分
中,,
則 ,
而 
則 在等腰三角形. ①       2分
又 在中,,
則                            3分
因 ,,
則 
又 ,即,
則  ,        4分
,
所以 .   ②       5分
由①②知 
故  .          6分     
  
(2)(法一)取中點(diǎn),連接
則 在中, .
,
∥面,                         7分
中,
所以為正三角形,
                           8分

.
,
∥面,                          9分
,
所以 面∥面.                       10分
又 
則 ∥面. &nbs

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱中,平面

(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為的充分條件,并給予證明;
,②;③是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長都為1,且為銳角,求平面與平面所成銳二面角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面四邊形的4個(gè)頂點(diǎn)都在球的表面上,為球的直徑,為球面上一點(diǎn),且平面 ,,點(diǎn)的中點(diǎn).
(1) 證明:平面平面;
(2) 求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正方形的邊長為2,分別為邊的中點(diǎn),是線段的中點(diǎn),如圖,把正方形沿折起,設(shè)

(1)求證:無論取何值,不可能垂直;
(2)設(shè)二面角的大小為,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,現(xiàn)將梯形沿CB、DA折起,使,得一簡單組合體如圖2示,已知分別為的中點(diǎn).
   
圖1                              圖2
(1)求證:平面;
(2)求證: ;
(3)當(dāng)多長時(shí),平面與平面所成的銳二面角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,,,分別為的中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在等腰直角三角形中,,,分別是上的點(diǎn),,
的中點(diǎn).將沿折起,得到如圖2所示的四棱錐,其中.

(Ⅰ) 證明:平面;
(Ⅱ) 求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點(diǎn)D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在底面是直角梯形的四棱錐S-ABCD中,


(1)求四棱錐S-ABCD的體積;
(2)求證:
(3)求SC與底面ABCD所成角的正切值。

查看答案和解析>>

同步練習(xí)冊(cè)答案