【題目】已知曲線C: (θ為參數(shù)),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)寫出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過(guò)點(diǎn)A,求|AP||AQ|

【答案】解:(Ⅰ)曲線C: (θ為參數(shù)),普通方程為(x+3)2+(y﹣4)2=16;
l2:cosθ﹣2sinθ= 普通方程為x﹣2y﹣4=0;
(Ⅱ)l1的參數(shù)方程 代入圓C方程可得t2+4(cosα﹣2sinα)t﹣12=0,
t1+t2=﹣4(cosα﹣2sinα),
∴|AP|= |t1+t2|=|2(cosα﹣2sinα)|
代入l2的方程,可得t=|AQ|=| |,
∴|AP||AQ|=10.
【解析】(Ⅰ)利用三種方程的轉(zhuǎn)化方法,即可寫出曲線C和直線l2的普通方程;(Ⅱ)l1的參數(shù)方程 代入圓C方程、l2的方程,利用參數(shù)的幾何意義,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx,g(x)=lnx﹣x+2.
(1)求函數(shù)g(x)的極大值;
(2)若關(guān)于x的不等式 在[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知 ,試比較f(tanα)與﹣cos2α的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1、F2為雙曲線C: (a>0,b>0)的左、右焦點(diǎn),點(diǎn)P為雙曲線C右支上一點(diǎn),直線PF1與圓x2+y2=a2相切,且|PF2|=|F1F2|,則雙曲線C的離心率為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(α)=cosα
(Ⅰ)當(dāng)α為第二象限角時(shí),化簡(jiǎn)f(α);
(Ⅱ)當(dāng)α∈( ,π)時(shí),求f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2,AB=1,E是DD1上的一點(diǎn).
(1)求異面直線AC與B1D所成的角;
(2)若B1D⊥平面ACE,求三棱錐A﹣CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)y=sin(2x+ )的圖象,只需將y=cos(2x﹣ )圖象上的所有點(diǎn)(
A.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
D.向右平行移動(dòng) 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱柱ABC﹣A1B1C1中,點(diǎn)C在平面A1B1C1內(nèi)的射影點(diǎn)為的A1B1中點(diǎn)O,AC=BC=AA1 , ∠ACB=90°.
(1)求證:AB⊥平面OCC1
(2)求二面角A﹣CC1﹣B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系中,曲線的C參數(shù)方程為 (φ為參數(shù)),現(xiàn)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)在曲線C上是否存在一點(diǎn)P,使點(diǎn)P到直線l的距離最。咳舸嬖,求出距離的最小值及點(diǎn)P的直角坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案