4.某鎮(zhèn)政府為了更好地服務(wù)于農(nóng)民,派調(diào)查組到某村考察.據(jù)了解,該村有100戶農(nóng)民,且都從事蔬菜種植,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動員部分農(nóng)民從事蔬菜加工.據(jù)估計,若能動員 x ( x>0)戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為3 (a-$\frac{3}{50}$x) ( a>0)萬元.
(1)在動員 x 戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動員前從事蔬菜種植的農(nóng)民的總年收入,求 x 的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求 a 的最大值.

分析 (1)由題中條件:“從事蔬菜種植的農(nóng)民的年總收入不低于動員前從事蔬菜種植的年總收入”得到一個不等關(guān)系,列不等式得x的取值范圍;
(2)問題先轉(zhuǎn)化成一個不等關(guān)系,然后轉(zhuǎn)化為恒成立問題解決.

解答 解:(1)由題意得3(100-x)(1+2x%)≥3×100,
即x2-50x≤0,解得0≤x≤50,
又因為x>0,所以0<x≤50;(6分)
(2)從事蔬菜加工的農(nóng)民的年總收入為3 (a-$\frac{3}{50}$x)x萬元,從事蔬菜種植農(nóng)民的年總收入為3(100-x)(1+2x%)萬元,
根據(jù)題意得,3 (a-$\frac{3}{50}$x)x≤3(100-x)(1+2x%)恒成立,
又x>0,所以a≤$\frac{100}{x}$+$\frac{x}{25}$+1恒成立,
而$\frac{100}{x}$+$\frac{x}{25}$+1≥5(當(dāng)且僅當(dāng)x=50時取得等號),
所以a的最大值為5.(16分)

點評 本題主要考查函數(shù)在實際生活中的應(yīng)用、恒成立問題的解法.求不等式恒成立的參數(shù)的取值范圍,是經(jīng)久不衰的話題,也是高考的熱點,它可以綜合地考查中學(xué)數(shù)學(xué)思想與方法,體現(xiàn)知識的交匯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在下列圖形中,G、H、M、N分別是正三棱柱的頂點或所在棱的中點,則表示直線GH、MN是異面直線的圖形有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sinx-$\frac{2}{π}$x,x∈[0,$\frac{π}{2}$].
( I)求證:f(x)≥0;
( II)若m<$\frac{sinx}{x}$<n對一切x∈(0,$\frac{π}{2}$)恒成立,求m和n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在一次射擊比賽中,8個泥制的靶子掛成三列,其中兩列各掛3個,一列掛2個,一射手射擊時只準擊碎三列靶子任一列中最下面的一個,若每次射擊都遵循這條原則,則擊碎8個靶子可以有多少種不同的次序?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標系xOy中,長為$\sqrt{2}$+1的線段的兩端點C,D分別在x軸、y軸上滑動,$\overrightarrow{CP}$=$\sqrt{2}$$\overrightarrow{PD}$.記點P的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線l與曲線E交于A,B兩點,線段AB的中點為M(${\frac{1}{2}$,1),求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在正四棱柱ABCD-A1B1C1D1中,底面邊長為2$\sqrt{2}$,側(cè)棱長為4,E、F分別
為棱AB、BC的中點,EF∩BD=G;
(1)求直線D1E與平面D1DBB1所成角的大小;
(2)求點D1到平面B1EF的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2,DE=1.
(1)求異面直線EF與BC所成角的大;
(2)若二面角A-BF-D的平面角的余弦值為$\frac{1}{3}$,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求極限$\underset{lim}{n→∞}$n($\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.己知橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0)的離心率e的值為$\frac{1}{2}$,右準線方程為x=4.如圖所示,橢圓C左右頂點分別為A,B,過右焦點F的直線交橢圓C于M,N,直線AM,MB交于點P.
(1)求橢圓的標準方程;
(2)若點P(4,$3\sqrt{3}$),直線AN,BM的斜率分別為k1,k2,求$\frac{k_1}{k_2}$.
(3)求證點P在一條定直線上.

查看答案和解析>>

同步練習(xí)冊答案