已知函數(shù)f(x)=[x[x]],其中[x]表示不超過實數(shù)x的最大整數(shù),如[-2.01]=-3,[1.999]=1.若-
3
2
≤x
3
2
,則f(x)的值域為
 
考點:函數(shù)的最值及其幾何意義
專題:新定義
分析:先對x的取值進(jìn)行分類討論:當(dāng)-
3
2
≤x<-1時時;當(dāng)-1≤x<0時;當(dāng)0≤x<1時;當(dāng)1≤x≤
3
2
時;故所求f(x)的值域為{0,1,2,3}.
解答: 解:當(dāng)-
3
2
≤x<-1時,[x]=-2,則2<x[x]≤3,∴f(x)可取2,3;
當(dāng)-1≤x<0時,[x]=-1,則0<x[x]≤1,∴f(x)可取0,1;
當(dāng)0≤x<1時,[x]=0,則x[x]=0,∴f(x)=0;
當(dāng)1≤x≤
3
2
時,[x]=1,則1≤x[x]
3
2
,∴f(x)=1;
故所求f(x)的值域為{0,1,2,3}.
故答案為:{0,1,2,3}.
點評:本題主要考查函數(shù)的求值,根據(jù)所給定義,將區(qū)間進(jìn)行分類討論即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為( 。
A、(32+
π
4
)cm3
B、(32+
π
2
)cm3
C、(41+
π
4
)cm3
D、(41+
π
2
)cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
9
4(1+4x2)
+x2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥3}∪{x|x<-1},則∁RA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若球O的體積為36πcm3,則它的半徑等于
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的連續(xù)函數(shù)y=f(x),對任意x滿足f(4-x)=f(x),(x-2)f′(x)<0.則下列結(jié)論正確的有
 

①函數(shù)y=f(x+2)為偶函數(shù);
②f(
2
)>f(sin18°+cos18°);
③若f(2)=2014,f(2014)=-2,則y=f(x)有兩個零點;
④若x1<x2且x1+x2>4則f(x1)<f(x2);
⑤在△ABC中,若三個內(nèi)角A、B、C成等差數(shù)列,且f(
3
sinA)<f(sin(C-
π
6
)),則△ABC為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
sinα-cosα
sina+cosα
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的偶函數(shù),對任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2時,有
f(x1)-f(x2)
x1-x2
>0
成立,下列結(jié)論中錯誤的是( 。
A、f(3)=0
B、直線x=-6是函數(shù)y=f(x)的圖象的一條對稱軸
C、函數(shù)y=f(x)在[-9,9]上有四個零點
D、函數(shù)y=f(x)在[-9,-6]上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-ax+1,若存在t∈[1,3],使f(-t2-1)=f(2t),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案