【題目】函數(shù) 的定義域為 , 值域為

【答案】(﹣∞,0)∪(0,+∞);(﹣∞,﹣1)∪(1,+∞)
【解析】解:由題意,函數(shù)y=f(x)= = ,分母不為0,∴102x﹣1≠0,
∴x≠0;
∴函數(shù)f(x)的定義域為(﹣∞,0)∪(0,+∞);
令y= ,
∴y(102x﹣1)=102x+1,
∴102x(y﹣1)=y+1,
,
∴x= ;
由對數(shù)的定義知, ,解得,y<﹣1或y>1;
【考點精析】本題主要考查了函數(shù)的定義域及其求法和函數(shù)的值域的相關(guān)知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從某學校高三年級共800名男生中隨機抽取50名測量身高,據(jù)測量被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)、第二組[160,165);…第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第六組比第七組多1人,第一組和第八組人數(shù)相同.
(I)求第六組、第七組的頻率并補充完整頻率分布直方圖;
(Ⅱ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x、y,求滿足|x﹣y|≤5的事件概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,ABAD,BCBD,平面ABD平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四面體ABCD中, 的中心, 分別是上的動點,且

(1)若平面,求實數(shù)的值;

(2)若,正四面體ABCD的棱長為,求平面和平面所成的角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設30多個分支機構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從70后和80后的員工中隨機調(diào)查了100位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計

70后

20

20

40

80后

40

20

60

合計

60

40

100

(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有90%以上的把握認為“是否愿意被外派與年齡有關(guān)”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構(gòu)的交流體驗活動,擬安排4名參與調(diào)查的70后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現(xiàn)采用隨機抽樣方法從報名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣1)2=2經(jīng)過橢圓Γ: + =1(a>b>0)的右焦點F和上頂點B.
(1)求橢圓Γ的方程;
(2)過原點O的射線l與橢圓Γ在第一象限的交點為Q,與圓C的交點為P,M為OP的中點,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C的焦點與橢圓 =1的焦點相同,且漸近線方程為y=± x.
(1)求雙曲線C的標準方程;
(2)設F1為雙曲線的左焦點,P為雙曲線C的右支上一點,且線段PF1的中點在y軸上,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,求 + 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)

某電視臺播放甲、乙兩套連續(xù)劇每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:

連續(xù)劇播放時長(分鐘)

廣告播放時長分鐘

收視人次

70

5

60

60

5

25

已知電視臺每周安排甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用,表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).

(I)用列出滿足題目條件的數(shù)學關(guān)系式,并畫出相應的平面區(qū)域

(II)問電視臺每周播出甲乙兩套連續(xù)劇各多少次,才能使收視人次最多?

查看答案和解析>>

同步練習冊答案