設(shè)函數(shù),數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)對,設(shè),若恒成立,求實數(shù)的取值范圍.

(1) .(2)的取值范圍是.

解析試題分析:(1)由可得:.所以這是一個等差數(shù)列,由等差數(shù)列的通項公式即可得.(2),.這是典型的用裂項法求和的數(shù)列. 由.要使得恒成立,則.用裂項法可求得,從而得,令.下面求的最小值.將變形得.利用函數(shù)的單調(diào)性便可得最小值,進而得的取值范圍.
試題解析:(1)由可得:.
所以是等差數(shù)列.
又因為.
(2) .
,
.
.
恒成立.
.
.
,則.
,易知時,最小.
所以,即的取值范圍是.
考點:1、等差數(shù)列;2、裂項求和;3、不等關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列滿足,且是方程的兩根。
(1)求的通項公式;(2)求數(shù)列的前n項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項為正數(shù)的數(shù)列中,,對任意的,成等比數(shù)列,公比為;成等差數(shù)列,公差為,且
(1)求的值;
(2)設(shè),證明:數(shù)列為等差數(shù)列;
(3)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是各項均不為零的)項等差數(shù)列,且公差.
(1)若,且該數(shù)列前項和最大,求的值;
(2)若,且將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列,求的值;
(3)若該數(shù)列中有一項是,則數(shù)列中是否存在不同三項(按原來的順序)為等比數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,,.
(1)求數(shù)列的通項公式; 
(2)若數(shù)列的前項和,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項公式;
(2)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}前三項之和為-3,前三項積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項都不相等的等差數(shù)列{an}的前6項和為60,且a6為a1和a21的等比中項.
(1)求數(shù)列{an}的通項公式.
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{}的前n項和Tn.

查看答案和解析>>

同步練習(xí)冊答案