【題目】如圖, 是邊長為3的正方形, 平面 平面, .

(1)證明:平面平面;

(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.

【答案】(1)見解析(2)存在點滿足條件.

【解析】試題分析:(1)根據(jù),結(jié)合面面平行的判定定理可知兩個平面平行;(2)先求出整個幾何體的體積.假設(shè)存在一點,過,連接,設(shè),求得幾何體的體積,將其分割成兩個三棱錐,利用表示出兩個三棱錐的高,再利用體積建立方程,解方程組求得的值.

試題解析:

解:

(1)∵平面, 平面

,∴平面,

是正方形, ,∴平面

, 平面 平面,∴平面平面.

(2)假設(shè)存在一點,過,連接,

,

設(shè),則,

設(shè)的距離為,則,

,解得,即存在點滿足條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生社團心理學(xué)研究小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時,曲線是二次函數(shù)圖象的一部分,當(dāng)時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時學(xué)習(xí)效果最佳.

(1)試求的函數(shù)關(guān)系式;

(2)教師在什么時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

討論的單調(diào)區(qū)間;

若直線的圖象恒在函數(shù)圖像的上方,求的取值范圍;

若存在,,使得,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若對滿足的一切的值,都有,求實數(shù)的取值范圍;

(3)若對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中, , ,點的中點.

(1)求證: 平面

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖,已知四棱錐中,底面為菱形,平面,,分別是,的中點.

I)證明:平面;

II)取,在線段上是否存在點,使得與平面所成最大角的正切值為,若存在,請求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網(wǎng)購者進一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)

此判斷能否在犯錯誤的概率不超過0.025的前提下認為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,證明:函數(shù)不是奇函數(shù);

2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;

3)若是奇函數(shù),且時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的標(biāo)準方程是

)求它的焦點坐標(biāo)和準線方程;

)直線過已知拋物線C的焦點且傾斜角為45°,且與拋物線的交點為A、B,求線段AB的長度.

查看答案和解析>>

同步練習(xí)冊答案