19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,λ),且$\overrightarrow{a}$∥$\overrightarrow$,則λ=( 。
A.-6B.6C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 利用向量平行的條件直接求解.

解答 解:∵向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,λ),且$\overrightarrow{a}$∥$\overrightarrow$,
∴$\frac{3}{2}=\frac{λ}{1}$,解得$λ=\frac{3}{2}$.
故選:C.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面向量平行的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的函數(shù)f(x)滿足條件f(x+4)=-f(x),且函數(shù)y=f(x+2)是偶函數(shù),當(dāng)x∈(0,2]時,$f(x)=lnx-ax({a>\frac{1}{2}})$,當(dāng)x∈[-2,0)時,f(x)的最小值為3,則a的值等于( 。
A.e2B.eC.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在三角形ABC中,角A,B,C所對邊分別為a,b,c,滿足(2b-c)cosA=acosC.
(1)求角A;
(2)若$a=\sqrt{13}$,b+c=5,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=$\frac{1}{2}$x2的圖象在點(x0,$\frac{1}{2}$x02)處的切線為l,若l也為函數(shù)y=lnx(0<x<1)的圖象的切線,則x0必須滿足(  )
A.$\frac{\sqrt{2}}{2}$<x0<1B.1<x0<$\sqrt{2}$C.$\sqrt{2}$<x0<$\sqrt{3}$D.$\sqrt{3}$<x0<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.同時擲兩個骰子,各擲一次,向上的點數(shù)之和是6的概率是( 。
A.$\frac{1}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={1,2,3},$B=\left\{{x|\frac{2-x}{x}≥0}\right\}$,則A∩B=( 。
A.{0,1,2}B.{1,2}C.{2,3}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)復(fù)數(shù)z=(2+i)2(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為3-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè){an}為各項均為正數(shù)的等比數(shù)列,且a2=$\frac{1}{3}$,a6=$\frac{1}{243}$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求和:T2n=a1-2a2+3a3-…-2na2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若全集U=R,集合A={x|-1≤x<1},B={x|x≤0或x>2},則集合A∪∁UB=( 。
A.{x|0<x<1}B.{x|-1≤x≤2}C.{x|-1<x<2}D.{x|0≤x≤1}

查看答案和解析>>

同步練習(xí)冊答案