定義在R上的偶函數(shù)滿足f(
3
2
+x)=f(
3
2
-x)且f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2014)的值為( 。
A、2B、1C、0D、-2
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由定義在R上的偶函數(shù)滿足f(
3
2
+x)=f(
3
2
-x)可知函數(shù)f(x)是周期為3的函數(shù);從而可得f(1)+f(2)+f(3)+…+f(2014)=671(f(1)+f(2)+f(3))+f(1),求f(1)、f(2)、f(3)即可.
解答: 解:∵定義在R上的偶函數(shù)滿足f(
3
2
+x)=f(
3
2
-x),
∴函數(shù)f(x)是周期為3的函數(shù);
又∵f(-1)=1,∴f(1)=1;
∴f(2)=f(-1)=1,f(3)=f(0)=-2;
故f(1)+f(2)+f(3)+…+f(2014)
=671(f(1)+f(2)+f(3))+f(1)
=671×(1+1-2)+1
=1;
故選B.
點(diǎn)評:本題考查了抽象函數(shù)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平行四邊形ABCD中,E為BC的中點(diǎn),F(xiàn)為CD的四分之一點(diǎn),設(shè)
AC
=m
AE
+N
AF
,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax-y+5=0與圓C:x2+y2=9相較于不同兩點(diǎn)A,B
(1)求實(shí)數(shù)a的取值范圍;
(2)是否存在是實(shí)數(shù)a,使得過點(diǎn)P(-2,1)的直線l垂直平分弦AB?若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
cos2ωx+sinωxcosωx(ω,a∈R),已知f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6

(1)求ω的值;
(2)若函數(shù)y=f(x)的圖象按向量
b
=(
π
6
3
2
)平移后得到函數(shù)y=g(x)的圖象,求y=g(x)在區(qū)間[0,
π
2
]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=x+a,y=ax(a>0,a≠1)的圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[
b
a
d
c
]
上的函數(shù)f(x)=
ax-b
+
d-cx
(a>0,c>0)具有如下性質(zhì):f(x)在區(qū)間[
b
a
,x0]
上單調(diào)遞增,f(x)在區(qū)間[x0,
d
c
]
上單調(diào)遞減,且f(x)max=f(x0)(其中x0=
b
a
+
d
c
-
b+d
a+c
).現(xiàn)給定函數(shù)f(x)=
8x-16
+
36-9x
,請你根據(jù)上述知識解決下列問題:
(1)求出f(x)的定義域;
(2)對于任意的x1,x2∈[2,
50
17
]
,當(dāng)x1<x2時(shí),比較f(x1)和f(x2)的大小;
(3)若f(x)-m<0的解集為非空集合,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x+y≥1
x-2y≤4
的解集記為D,若?(x,y)∈D,則( 。
A、x+2y≥-2
B、x+2y≥2
C、x-2y≥-2
D、x-2y≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

易知n2=1+2+3+…+n+(n-1)+…+2+1,故有13=1,23=2•22=2(1+2+1)=2+4+2;33=3•32=3(1+2+3+2+1)=3+6+9+6+3,…,這些通過分拆得到的數(shù)可組成數(shù)陣認(rèn)真觀察數(shù)陣,可以求出和式S=13+23+33+…+203的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=(0.5) 
1
2
,b=(0.6) 
1
3
,則a,b的大小順序是
 

查看答案和解析>>

同步練習(xí)冊答案