【題目】已知橢圓C:的離心率為,且經(jīng)過點(,).
(1)橢圓C的方程;
(2)過點P(0,2)的直線交橢圓C于A,B兩點,求△OAB(O為原點)面積的最大值.
【答案】(1);(2).
【解析】
(1)由橢圓的離心率,得,又由橢圓C經(jīng)過點,代入可得,聯(lián)立方程組,求得的值,即可求得橢圓的方程;
(2)設(shè)直線的方程為,聯(lián)立方程組,求得,,再由弦長公式和點到直線的距離公式,求得面積的表達(dá)式,利用基本不等式,即可求解.
(1)根據(jù)題意知:離心率,可得,即,
由,所以,整理得…….①
又由橢圓C經(jīng)過點,代入可得,即…..②
聯(lián)立①②,解得,所以橢圓C的方程為.
(2)由題意,易知直線的斜率存在,設(shè)直線的方程為,
聯(lián)立方程組,消去y得,
因為直線與橢圓C相交于兩點,
所以,得,
設(shè)A(x1,y1),B(x2,y2),則,,
所以
==
點到直線的距離
所以面積S△AOB=·d=()=
令,則,
所以,
當(dāng)且僅當(dāng),即時等號成立,
此時,面積取得最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
男生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(3)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解人們對“延遲退休年齡政策”的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
(I)由頻率分布直方圖估計年齡的眾數(shù)和平均數(shù);
(II)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
參考數(shù)據(jù):
(III)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機(jī)抽2人.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)與復(fù)平面上點對應(yīng).
(1)若是關(guān)于的一元二次方程的一個虛根,且,求實數(shù)的值;
(2)設(shè)復(fù)數(shù)滿足條件(其中、常數(shù)),當(dāng)為奇數(shù)時,動點的軌跡為,當(dāng)為偶數(shù)時,動點的軌跡為,且兩條曲線都經(jīng)過點,求軌跡與的方程;
(3)在(2)的條件下,軌跡上存在點,使點與點的最小距離不小于,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市政府招商引資,為吸引外商,決定第一個月產(chǎn)品免稅,某外資廠該第一個月A型產(chǎn)品出廠價為每件10元,月銷售量為6萬件;第二個月,當(dāng)?shù)卣_始對該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價就上升到每件元,預(yù)計月銷售量將減少p萬件.
(1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數(shù),并指出這個函數(shù)的定義域;
(2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?
(3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求實數(shù)m的值;
(2)若l1∥l2,求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中x>0,k為常數(shù),e為自然對數(shù)的底數(shù).
(1)當(dāng)k≤0時,求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間(1,3)上存在兩個極值點,求實數(shù)k的取值范圍;
(3)證明:對任意給定的實數(shù)k,存在(),使得在區(qū)間(,)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:方程表示焦點在軸上的雙曲線:命題:若存在,使得成立.
(1)如果命題是真命題,求實數(shù)的取值范圍;
(2)如果“”為假命題,“”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,E、F、G、H分別是棱、、、的中點.
(1)判斷直線與的位置關(guān)系,并說明理由;
(2)求異面直線與所成的角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com