8.設(shè)等比數(shù)列{an}滿足a2=4,S2=6.
(1)求數(shù)列{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和Tn

分析 (1)利用等比數(shù)列的通項公式即可得出.
(2)利用“錯位相減法”、等比數(shù)列的求和公式即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公式為q,由已知得$\left\{\begin{array}{l}{{a}_{1}q=2}\\{{a}_{1}+{a}_{1}q=6}\end{array}\right.$,
兩式相除得q=2,a1=2,∴an=2n
(2)bn=n?2n,∴Tn=1?2+2?22+3?23+…+n2n,
上式兩邊同乘以2得2Tn=1?22+2?23+…+(n-1)2n+n2n+1,
兩式相減得-Tn=2+22+23+…+2n-n?2n+1=2n+1-2-n?2n+1,
∴Tn=(n-1)2n+1+2.

點評 本題考查了“錯位相減法”、等比數(shù)列的通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義在(-∞,0)∪(0,+∞)的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式f(x)<0的解集是{x|x<-1或0<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.根據(jù)下列條件,分別寫出橢圓的標準方程:
(1)與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$有公共焦點,且過M(3,-2);
(2)中心在原點,焦點在坐標軸上,且經(jīng)過兩點$A({\sqrt{3},-2})$和$B({-2\sqrt{3},1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等比數(shù)列{an}的公比q>1,Sn是前n項和,且a1,a3是方程x2-5x+4=0的兩根,求數(shù)列{an}的通項公式an及S6的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\sqrt{x}$+$\sqrt{x-2}$的定義域為( 。
A.(0,+∞)B.(2,+∞)C.[0,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1)化簡:f(α)=$\frac{sin(α+\frac{3}{2}π)sin(-α+π)cos(α+\frac{π}{2})}{cos(-α-π)cos(α-\frac{π}{2})tan(α+π)}$
(2)求值:tan675°+sin(-330°)+cos960°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線l過拋物線C:y=$\frac{1}{4}{x^2}$的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于( 。
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.$\frac{{16\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{\sqrt{-x}}{2{x}^{2}-3x-2}$的定義域為( 。
A.(-∞,0]B.(-∞,-$\frac{1}{2}$]C.(-∞,-$\frac{1}{2}$]∪(-$\frac{1}{2}$,0]D.(-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點,那么-1<f(x)<1 的解集是( 。
A.(-3,0)B.(0,3)C.(-∞,-1]∪[3,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案