精英家教網 > 高中數學 > 題目詳情

【題目】若集合A={x|x﹣2<0},B={x|ex>1},則A∩B=( )
A.R
B.(﹣∞,2)
C.(0,2)
D.(2,+∞)

【答案】C
【解析】解:集合A={x|x﹣2<0}={x|x<2},

B={x|ex>1}={x|x>0},

則A∩B={x|0<x<2}=(0,2).

所以答案是:C.

【考點精析】本題主要考查了集合的交集運算和指數函數的圖像與性質的相關知識點,需要掌握交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;a0=1, 即x=0時,y=1,圖象都經過(0,1)點;ax=a,即x=1時,y等于底數a;在0<a<1時:x<0時,ax>1,x>0時,0<ax<1;在a>1時:x<0時,0<ax<1,x>0時,ax>1才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數
(1)若f(x)是定義在R上的偶函數,求實數a的值;
(2)在(1)的條件下,若g(x)=f(x)﹣2,求函數g(x)的零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2,且過點P(1,
(1)橢圓C的方程;
(2)設橢圓C的左右焦點分別為F1 , F2 , 過點F2的直線l與橢圓C交于M,N兩點.
①當直線l的傾斜角為45°時,求|MN|的長;
②求△MF1N的內切圓的面積的最大值,并求出當△MF1N的內切圓的面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=f(x)的定義域是[0,2],則函數g(x)= 的定義域是( )
A.[0,1]
B.[0,1)
C.[0,1)∪(1,4]
D.(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD⊥AB,AB∥DC,PA⊥底面ABCD,點E為棱PC的中點.AD=DC=AP=2AB=2.

(1)證明:BE⊥平面PDC;
(2)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AD﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知非空集合A,B滿足以下兩個條件.
(。〢∪B={1,2,3,4,5,6},A∩B=;
(ⅱ)A的元素個數不是A中的元素,B的元素個數不是B中的元素,則有序集合對(A,B)的個數為( )
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】連江一中第49屆田徑運動會提出了“我運動、我陽光、我健康、我快樂”的口號,某同學要設計一張如圖所示的豎向張貼的長方形海報進行宣傳,要求版心面積為162dm2(版心是指圖中的長方形陰影部分,dm為長度單位分米),上、下兩邊各空2dm,左、右兩邊各空1dm.

(1)若設版心的高為xdm,求海報四周空白面積關于x的函數S(x)的解析式;
(2)要使海報四周空白面積最小,版心的高和寬該如何設計?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要在如圖所示的花圃中的5個區(qū)域中種入4種顏色不同的花,要求相鄰區(qū)域不同色,有種不同的種法(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產一種機器的固定成本為5000元,且每生產100部,需要加大投入2500元.對銷售市場進行調查后得知,市場對此產品的需求量為每年500部,已知銷售收入函數為 ,其中x是產品售出的數量0≤x≤500.
(1)若為x年產量,y表示利潤,求y=f(x)的解析式
(2)當年產量為何值時,工廠的年利潤最大?其最大值是多少?

查看答案和解析>>

同步練習冊答案