分析 設(shè)(x,y)是曲線x2+4xy+2y2=1的點(diǎn),在矩陣 $({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下的點(diǎn)為(x′,y′),得出關(guān)于a,b的方程組,從而解決問題.
解答 解:設(shè)(x,y)是曲線x2+4xy+2y2=1的點(diǎn),在矩陣 $[\begin{array}{l}{1}&{a}\\&{1}\end{array}]$的作用下的點(diǎn)為(x′,y′),
即$\left\{\begin{array}{l}{x′=x+ay}\\{y′=bx+y}\end{array}\right.$,又x′2-2y′2=1,
∴(x+ay)2-2(bx+y)2=1,(1-2b2)x2+(2a-4b)xy+(a2-2)y2=1.
故 $\left\{\begin{array}{l}{1-2b=1}\\{2a-4b=4}\\{{a}^{2}-2=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=2}\\{b=0}\end{array}\right.$,
∴ab=0.
故答案為:0.
點(diǎn)評 本題主要考查幾種特殊的矩陣變換、曲線與方程等基礎(chǔ)知識,考查運(yùn)算求解能力,解答的關(guān)鍵是利用待定系數(shù)法求解a,b;屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{1+\sqrt{3}}$ | B. | $\frac{{1+\sqrt{3}}}{2}$ | C. | $\frac{{2+\sqrt{3}}}{2}$ | D. | ±$\frac{{1+\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-7,1) | B. | .[0,1] | C. | [-7,0] | D. | [-7,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | PA=PB=PC | B. | 點(diǎn)P到AB,BC,AC的距離相等 | ||
C. | PA⊥PB,PB⊥PC,PC⊥PA | D. | PA,PB,PC與平面α所成的角相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-1,\frac{1}{4})$ | B. | $({-∞,-1})∪(\frac{1}{4},+∞)$ | C. | $({-∞,-1}]∪[\frac{1}{4},+∞)$ | D. | $[-1,\frac{1}{4}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com