已知兩個(gè)正數(shù)x,y滿足x+4y+5=xy,則xy取最小值時(shí)x,y的值分別為( 。
A.5,5B.10,
5
2
C.10,5D.10,10
∵x+4y+5=xy,∴x+4y=xy-5①,
∵x,y是正數(shù),∴x+4y≥4
xy
,當(dāng)且僅當(dāng)x=4y時(shí)等號(hào)成立,
代入①式得,xy-5≥4
xy
,即xy-4
xy
-5≥0,解得t≥5或t≤-1(舍去),
∴x=4y時(shí),有
xy
=5,解得x=10,y=
5
2

故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)正數(shù)x,y滿足x+y=4,則使不等式
1
x
+
4
y
≥m
恒成立的實(shí)數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于問(wèn)題:“已知兩個(gè)正數(shù)x,y滿足x+y=2,求
1
x
+
4
y
的最小值”,給出如下一種解法:
Qx+y=2,∴
1
x
+
4
y
=
1
2
(x+y)(
1
x
+
4
y
)
=
1
2
(5+
y
x
+
4x
y
)
,
Qx>0,y>0,∴
y
x
+
4x
y
≥2
y
x
4x
y
=4
,∴
1
x
+
4
y
1
2
(5+4)=
9
2
,
當(dāng)且僅當(dāng)
y
x
=
4x
y
x+y=2
,即
x=
2
3
y=
4
3
時(shí),
1
x
+
4
y
取最小值
9
2

參考上述解法,已知A,B,C是△ABC的三個(gè)內(nèi)角,則
1
A
+
9
B+C
的最小值為
16
π
16
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•重慶一模)已知兩個(gè)正數(shù)x,y滿足x+4y+5=xy,則xy取最小值時(shí)x,y的值分別為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)正數(shù)x,y滿足x+4y+5=xy,則xy取最小值時(shí)x,y的值分別為
10
10
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《不等式》2013年高三一輪復(fù)習(xí)訓(xùn)練(烏魯木齊101中學(xué))(解析版) 題型:填空題

已知兩個(gè)正數(shù)x,y滿足x+y=4,則使不等式恒成立的實(shí)數(shù)m的范圍是    

查看答案和解析>>

同步練習(xí)冊(cè)答案