6.求曲線y2=4x與直線y=x所圍成的圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積( 。
A.$\frac{8}{3}$B.$\frac{32}{3}$πC.$\frac{8}{3}$πD.24π

分析 利用定積分求體積.

解答 解:解方程組$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x}\end{array}\right.$得x=4,y=4.
∴幾何體的體積V=π${∫}_{0}^{4}$(4x-x2)dx=π•(2x2-$\frac{{x}^{3}}{3}$)|${\;}_{0}^{4}$=$\frac{32π}{3}$.
故選B.

點(diǎn)評(píng) 本題考查用定積分求簡(jiǎn)單幾何體的體積,屬于基礎(chǔ)題.利用定積分求旋轉(zhuǎn)體的體積,求解的關(guān)鍵是找出被積函數(shù)和相應(yīng)的積分區(qū)間,準(zhǔn)確利用公式進(jìn)行計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知奇函數(shù)f(x)在區(qū)間[2,9]上是增函數(shù),在區(qū)間[3,8]上的最大值為9,最小值為2,則f(-8)-2f(-3)等于( 。
A.5B.-10C.10D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點(diǎn),PO⊥平面ABCD,M為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面ACM;  
(Ⅱ)求證:BC⊥PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點(diǎn)為A,離心率為e,且橢圓C過(guò)點(diǎn)$E({2e,\frac{2}})$,以AE為直徑的圓恰好經(jīng)過(guò)橢圓的右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l(直線l不過(guò)原點(diǎn)且斜率存在)與橢圓C交于P,Q兩個(gè)不同的點(diǎn),且△OPQ的面積S=1,若N為線段PQ的中點(diǎn),問(wèn):在x軸上是否存在兩個(gè)定點(diǎn)E1,E2,使得直線NE1與NE2的斜率之積為定值?若存在,求出E1,E2的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.第一組樣本點(diǎn)為(-5,-8.9),(-4,-7.2),(-3,-4.8),(-2,-3.3),(-1,-0.9)
第二組樣本點(diǎn)為(1,8.9),(2,7.2),(3,4.8),(4,3.3),(5,0.9)
第一組變量的線性相關(guān)系數(shù)為r1,第一組變量的線性相關(guān)系數(shù)為r2,則( 。
A.r1>0>r2B.r2>0>r1C.r1<r2<0D.r2>r1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若實(shí)數(shù)a,b,c∈(0,1)且10a+9b=9,a+b+c=1,則當(dāng)$\frac{10}{a}+\frac{1}{9b}$取最小值時(shí),c的值為( 。
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知min{{a,b}=$\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}\right.$f(x)=min{|x|,|x+t|},函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{1}{2}$對(duì)稱;若“?x∈[1,+∞),ex>2mex”是真命題(這里e是自然對(duì)數(shù)的底數(shù)),則當(dāng)實(shí)數(shù)m>0時(shí),函數(shù)g(x)=f(x)-m零點(diǎn)的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)集合M={x2-2x<0},N={x|x≤1},則M∩N=( 。
A.(0,1)B.(1,2)C.(0,2)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)${\vec e}_1,{\vec e}_2$是兩個(gè)單位向量,則下列結(jié)論正確的是( 。
A.${\vec e}_1={\vec e}_2$B.${\vec e}_1∥{\vec e}_2$C.$|{{\vec e}_1}|=|{{\vec e}_2}|$D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案