【題目】某學校有高一、高二、高三三個年級,已知高一、高二、高三的學生數(shù)之比為2:3;5,現(xiàn)從該學校中抽取一個容量為100的樣本,從高一學生中用簡單隨機抽樣抽取樣本時,學生甲被抽到的概率為 ,則該學校學生的總數(shù)為(
A.200
B.400
C.500
D.1000

【答案】B
【解析】解:∵從高一學生中用簡單隨機抽樣抽取樣本時,學生甲被抽到的概率為 , ∴在整個抽樣過程中,每個學生被抽到的概率為 ,
∵從該學校中抽取一個容量為100的樣本,
∴該學校學生的總數(shù)為 =400,
故選:B.
【考點精析】利用分層抽樣對題目進行判斷即可得到答案,需要熟知先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】奇函數(shù)fx)定義域是(﹣1,0)∪(0,1),f)=0,當x>0時,總有(xf′(xln(1﹣x2)>2fx)成立,則不等式fx)>0的解集為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖象向左平移 個周期后,所得圖象對應(yīng)的函數(shù)g(x)的一個單調(diào)增區(qū)間為(
A.[0,π]
B.
C.
D.[﹣π,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖象向左平移 個單位長度后,所得函數(shù)g(x)的圖象關(guān)于原點對稱,則函數(shù)f(x)在 的最大值為(
A.0
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生 (I)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學依據(jù)自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統(tǒng)計記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).
甲的頻數(shù)統(tǒng)計圖(部分)

運行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計圖(部分)

運行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無關(guān)),若 a2i1≤k2﹣2k﹣1對一切m∈N*恒成立,則實數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定命題p:“若a2017>﹣1,則a>﹣1”;命題q:“x∈R,x2tanx2>0”,則下列命題中,真命題的是(
A.p∨q
B.(¬p)∨q
C.(¬p)∧q
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)擬建立一個藝術(shù)搏物館,采取競標的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標方案:兩家公司從6個招標總是中隨機抽取3個總題,已知這6個招標問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,其左、右焦點分別為F1 , F2 , 離心率為 ,點R的坐標為 ,又點F2在線段RF1的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點分別為A1 , A2 , 點P在直線 上(點P不在x軸上),直線PA1 , PA2與橢圓C分別交于不同的兩點M,N,線段MN的中點為Q,若|MN|=λ|A1Q|,求λ.

查看答案和解析>>

同步練習冊答案